Coordination of two opposite flagella allows high-speed swimming and active turning of individual zoospores

  1. Quang D Tran  Is a corresponding author
  2. Eric Galiana
  3. Philippe Thomen
  4. Céline Cohen
  5. François Orange
  6. Fernando Peruani
  7. Xavier Noblin  Is a corresponding author
  1. Institut Jacques Monod, France
  2. Université Côte d'Azur, France
  3. CY Cergy Paris Université, France

Abstract

Phytophthora species cause diseases in a large variety of plants and represent a serious agricultural threat, leading, every year, to multibillion dollar losses. Infection occurs when these biflagellated zoospores move across the soil at their characteristic high speed and reach the roots of a host plant. Despite the relevance of zoospore spreading in the epidemics of plant diseases, characteristics of individual swimming of zoospores have not been fully investigated. It remains unknown about the characteristics of two opposite beating flagella during translation and turning, and the roles of each flagellum on zoospore swimming. Here, combining experiments and modeling, we show how these two flagella contribute to generate thrust when beating together, and identify the mastigonemes-attached anterior flagellum as the main source of thrust. Furthermore, we find that turning involves a complex active process, in which the posterior flagellum temporarily stops, while the anterior flagellum keeps on beating and changes its gait from sinusoidal waves to power and recovery strokes, similar to Chlamydomonas's breaststroke, to reorient its body to a new direction. Our study is a fundamental step towards a better understanding of the spreading of plant pathogens' motile forms, and shows that the motility pattern of these biflagellated zoospores represents a distinct eukaryotic version of the celebrated 'run-and-tumble' motility class exhibited by peritrichous bacteria.

Data availability

All data generated and simulation files are available via Zenodo using this URL: https://doi.org/10.5281/zenodo.4710633. In the data, we include:(1) datasets of all zoospore positions along multiple trajectories in the experiment of Figure 2,(2) a MATLAB file to compute all the statistical results in Figure 2(D-G),(3) a MATLAB file containing the simulation model presented in Figure 2(H),(4) datasets of zoospore positions, speed, moving directions, body orientations during the turning, presented in Figure 4(A-D).

The following data sets were generated

Article and author information

Author details

  1. Quang D Tran

    CNRS, UMR 7592, Institut Jacques Monod, Paris, France
    For correspondence
    duc-quang.tran@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5637-0647
  2. Eric Galiana

    INRAE UMR 1355, CNRS UMR 7254, Université Côte d'Azur, Sophia Antipolis, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Philippe Thomen

    INRAE UMR 1355, CNRS UMR 7254, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Céline Cohen

    INRAE UMR 1355, CNRS UMR 7254, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. François Orange

    INRAE UMR 1355, CNRS UMR 7254, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Fernando Peruani

    CNRS UMR 8089, CY Cergy Paris Université, Cergy-Pontoise, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Xavier Noblin

    INRAE UMR 1355, CNRS UMR 7254, Université Côte d'Azur, Nice, France
    For correspondence
    xavier.noblin@univ-cotedazur.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Centre National de la Recherche Scientifique (ANR-15-IDEX-01)

  • Eric Galiana
  • Xavier Noblin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Tran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,995
    views
  • 292
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Quang D Tran
  2. Eric Galiana
  3. Philippe Thomen
  4. Céline Cohen
  5. François Orange
  6. Fernando Peruani
  7. Xavier Noblin
(2022)
Coordination of two opposite flagella allows high-speed swimming and active turning of individual zoospores
eLife 11:e71227.
https://doi.org/10.7554/eLife.71227

Share this article

https://doi.org/10.7554/eLife.71227

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Berit Siedentop, Viacheslav N Kachalov ... Sebastian Bonhoeffer
    Research Article

    Background:

    Under which conditions antibiotic combination therapy decelerates rather than accelerates resistance evolution is not well understood. We examined the effect of combining antibiotics on within-patient resistance development across various bacterial pathogens and antibiotics.

    Methods:

    We searched CENTRAL, EMBASE, and PubMed for (quasi)-randomised controlled trials (RCTs) published from database inception to 24 November 2022. Trials comparing antibiotic treatments with different numbers of antibiotics were included. Patients were considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that had not been present in the baseline culture. We combined results using a random effects model and performed meta-regression and stratified analyses. The trials’ risk of bias was assessed with the Cochrane tool.

    Results:

    42 trials were eligible and 29, including 5054 patients, qualified for statistical analysis. In most trials, resistance development was not the primary outcome and studies lacked power. The combined odds ratio for the acquisition of resistance comparing the group with the higher number of antibiotics with the comparison group was 1.23 (95% CI 0.68–2.25), with substantial between-study heterogeneity (I2=77%). We identified tentative evidence for potential beneficial or detrimental effects of antibiotic combination therapy for specific pathogens or medical conditions.

    Conclusions:

    The evidence for combining a higher number of antibiotics compared to fewer from RCTs is scarce and overall compatible with both benefit or harm. Trials powered to detect differences in resistance development or well-designed observational studies are required to clarify the impact of combination therapy on resistance.

    Funding:

    Support from the Swiss National Science Foundation (grant 310030B_176401 (SB, BS, CW), grant 32FP30-174281 (ME), grant 324730_207957 (RDK)) and from the National Institute of Allergy and Infectious Diseases (NIAID, cooperative agreement AI069924 (ME)) is gratefully acknowledged.

    1. Microbiology and Infectious Disease
    Dipasree Hajra, Raju S Rajmani ... Dipshikha Chakravortty
    Research Article

    Sirtuins are the major players in host immunometabolic regulation. However, the role of sirtuins in the modulation of the immune metabolism pertaining to salmonellosis is largely unknown. Here, our investigation focussed on the role of two important sirtuins, SIRT1 and SIRT3, shedding light on their impact on intracellular Salmonella’s metabolic switch and pathogenesis establishment. Our study indicated the ability of the live Salmonella Typhimurium to differentially regulate the levels of SIRT1 and SIRT3 for maintaining the high glycolytic metabolism and low fatty acid metabolism in Salmonella. Perturbing SIRT1 or SIRT3 through knockdown or inhibition resulted in a remarkable shift in the host metabolism to low fatty acid oxidation and high glycolysis. This switch led to decreased proliferation of Salmonella in the macrophages. Further, Salmonella-induced higher levels of SIRT1 and SIRT3 led to a skewed polarization state of the macrophages from a pro-inflammatory M1 state toward an immunosuppressive M2, making it more conducive for the intracellular life of Salmonella. Alongside, governing immunological functions by modulating p65 NF-κB acetylation, SIRT1, and SIRT3 also skew Salmonella-induced host metabolic switch by regulating the acetylation status of HIF-1α and PDHA1. Interestingly, though knockdown of SIRT1/3 attenuated Salmonella proliferation in macrophages, in in vivo mice model of infection, inhibition or knockdown of SIRT1/3 led to more dissemination and higher organ burden, which can be attributed to enhanced ROS and IL-6 production. Our study hence reports for the first time that Salmonella modulates SIRT1/3 levels to maintain its own metabolism for successful pathogenesis.