Desmosomal connectomics of all somatic muscles in an annelid larva

Abstract

Cells form networks in animal tissues through synaptic, chemical and adhesive links. Invertebrate muscle cells often connect to other cells through desmosomes, adhesive junctions anchored by intermediate filaments. To study desmosomal networks, we skeletonised 853 muscle cells and their desmosomal partners in volume electron microscopy data covering an entire larva of the annelid Platynereis. Muscle cells adhere to each other, to epithelial, glial, ciliated, and bristle-producing cells and to the basal lamina, forming a desmosomal connectome of over 2,000 cells. The aciculae - chitin rods that form an endoskeleton in the segmental appendages - are highly connected hubs in this network. This agrees with the many degrees of freedom of their movement, as revealed by video microscopy. Mapping motoneuron synapses to the desmosomal connectome allowed us to infer the extent of tissue influenced by motoneurons. Our work shows how cellular-level maps of synaptic and adherent force networks can elucidate body mechanics.

Data availability

All EM, tracing and annotation data are available at https://catmaid.jekelylab.ex.ac.ukAll code is available at https://github.com/JekelyLab/Jasek_et_al

The following data sets were generated

Article and author information

Author details

  1. Sanja Jasek

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    No competing interests declared.
  2. Csaba Verasztó

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    No competing interests declared.
  3. Emelie Brodrick

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    No competing interests declared.
  4. Réza Shahidi

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    No competing interests declared.
  5. Tom Kazimiers

    kazmos GmbH, Dresden, Germany
    Competing interests
    Tom Kazimiers, Tom Kazimiers is the founder of kazmos GmbH, a company that continues the development of the open-source package CATMAID..
  6. Alexandra Kerbl

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    Competing interests
    No competing interests declared.
  7. Gáspár Jékely

    Living Systems Institute, University of Exeter, Exeter, United Kingdom
    For correspondence
    g.jekely@exeter.ac.uk
    Competing interests
    Gáspár Jékely, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8496-9836

Funding

European Commission (FP7-PEOPLE-2012-ITN grant no. 317172)

  • Sanja Jasek
  • Gáspár Jékely

Wellcome Trust (Investigator Award 214337/Z/18/Z)

  • Sanja Jasek
  • Csaba Verasztó
  • Réza Shahidi
  • Gáspár Jékely

European Research Council (grant agreement No 101020792)

  • Alexandra Kerbl
  • Gáspár Jékely

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Jasek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 558
    views
  • 81
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sanja Jasek
  2. Csaba Verasztó
  3. Emelie Brodrick
  4. Réza Shahidi
  5. Tom Kazimiers
  6. Alexandra Kerbl
  7. Gáspár Jékely
(2022)
Desmosomal connectomics of all somatic muscles in an annelid larva
eLife 11:e71231.
https://doi.org/10.7554/eLife.71231

Share this article

https://doi.org/10.7554/eLife.71231

Further reading

    1. Cell Biology
    Fabian Link, Sisco Jung ... Brooke Morriswood
    Research Article

    The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.

    1. Cell Biology
    Georgia Maria Sagia, Xenia Georgiou ... Sofia Dimou
    Research Article Updated

    Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.