Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3

Abstract

Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples; SWRs) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.

Data availability

The source code to build, run and analyze our model is publicly available on GitHub: https://github.com/KaliLab/ca3net

Article and author information

Author details

  1. András Ecker

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9635-4169
  2. Bence Bagi

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Eszter Vértes

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Orsolya Steinbach-Németh

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Rita Karlocai

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Orsolya I Papp

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. István Miklós

    Alfréd Rényi Institute of Mathematics, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  8. Norbert Hájos

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  9. Tamás Freund

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  10. Attila I Gulyás

    Institute of Experimental Medicine, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  11. Szabolcs Káli

    Institute of Experimental Medicine, Budapest, Hungary
    For correspondence
    kali@koki.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2740-6057

Funding

Hungarian Scientific Research Fund (K83251)

  • Maria Rita Karlocai
  • Attila I Gulyás
  • Szabolcs Káli

Hungarian Scientific Research Fund (K85659)

  • Orsolya Steinbach-Németh
  • Norbert Hájos

Hungarian Scientific Research Fund (K115441)

  • Attila I Gulyás
  • Szabolcs Káli

Hungarian Brain Research Program (2017-1.2.1-NKP-2017-00002)

  • Norbert Hájos

European Commission (ERC 2011 ADG 294313)

  • Tamás Freund
  • Attila I Gulyás
  • Szabolcs Káli

European Commission (FP7 no. 604102,H2020 no. 720270,no. 785907 (Human Brain Project))

  • Tamás Freund
  • Attila I Gulyás
  • Szabolcs Káli

Hungarian Ministry of Innovation and Technology NRDI Office (Artificial Intelligence National Laboratory)

  • Szabolcs Káli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were approved by the Committee for the Scientific Ethics of Animal Research (22.1/4027/003/2009) and were performed according to the guidelines of the institutional ethical code and the Hungarian Act of Animal Care and Experimentation. Experiments were performed in acute brain slices; no animal suffering was involved as mice were deeply anaesthetized with isoflurane and decapitated before slice preparation. Data recorded in the context of other studies were used for model fitting, and therefore no additional animals were used for the purpose of this study.

Copyright

© 2022, Ecker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,807
    views
  • 625
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. András Ecker
  2. Bence Bagi
  3. Eszter Vértes
  4. Orsolya Steinbach-Németh
  5. Maria Rita Karlocai
  6. Orsolya I Papp
  7. István Miklós
  8. Norbert Hájos
  9. Tamás Freund
  10. Attila I Gulyás
  11. Szabolcs Káli
(2022)
Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3
eLife 11:e71850.
https://doi.org/10.7554/eLife.71850

Share this article

https://doi.org/10.7554/eLife.71850

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.