An empirical energy landscape reveals mechanism of proteasome in polypeptide translocation

  1. Rui Fang
  2. Jason Hon
  3. Mengying Zhou
  4. Ying Lu  Is a corresponding author
  1. Harvard Medical School, United States

Abstract

The ring-like ATPase complexes in the AAA+ family perform diverse cellular functions that require coordination between the conformational transitions of their individual ATPase subunits1,2. How the energy from ATP hydrolysis is captured to perform mechanical work by these coordinated movements is unknown. In this study, we developed a novel approach for delineating the nucleotide-dependent free-energy landscape (FEL) of the proteasome's heterohexameric ATPase complex based on complementary structural and kinetic measurements. We used the FEL to simulate the dynamics of the proteasome and quantitatively evaluated the predicted structural and kinetic properties. The FEL model predictions are consistent with a wide range of experimental observations in this and previous studies and suggested novel mechanistic features of the proteasomal ATPases. We find that the cooperative movements of the ATPase subunits result from the design of the ATPase hexamer entailing a unique free-energy minimum for each nucleotide-binding status. ATP hydrolysis dictates the direction of substrate translocation by triggering an energy-dissipating conformational transition of the ATPase complex.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3,4,5. The original images for the single-molecule experiments are available on Dryad (https://doi.org/10.5061/dryad.t1g1jwt2t). The source code is available in GitHub (https://github.com/luyinghms/Proteasome-FEL-model.git)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rui Fang

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason Hon

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mengying Zhou

    Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ying Lu

    Department of Systems Biology, Harvard Medical School, Boston, United States
    For correspondence
    ying_lu@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3516-7735

Funding

National Institute of General Medical Sciences (GM134064-01)

  • Ying Lu

Edward Mallinckrodt, Jr. Foundation

  • Ying Lu

Harvard Medical School (Dean's initiative award)

  • Ying Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Fang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,860
    views
  • 259
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Fang
  2. Jason Hon
  3. Mengying Zhou
  4. Ying Lu
(2022)
An empirical energy landscape reveals mechanism of proteasome in polypeptide translocation
eLife 11:e71911.
https://doi.org/10.7554/eLife.71911

Share this article

https://doi.org/10.7554/eLife.71911

Further reading

    1. Physics of Living Systems
    Ning Liu, Wenan Qiang ... Huanyu Qiao
    Research Article

    Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young’s modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.

    1. Cancer Biology
    2. Physics of Living Systems
    Joseph Ackermann, Chiara Bernard ... Martine D Ben Amar
    Research Article

    The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.