Atmospheric particulate matter aggravates CNS demyelination through involvement of TLR-4/NF-kB signaling and microglial activation

  1. Bing Han
  2. Xing Li
  3. Ruo-Song Ai
  4. Si-Ying Deng
  5. Ze-Qing Ye
  6. Xin Deng
  7. Wen Ma
  8. Shun Xiao
  9. Jing-Zhi Wang
  10. Li-Mei Wang
  11. Chong Xie
  12. Yan Zhang
  13. Yan Xu
  14. Yuan Zhang  Is a corresponding author
  1. Shaanxi Normal University, China
  2. First Affiliated Hospital of Zhengzhou University, China
  3. Shanghai Jiaotong University School of Medicine, China

Abstract

Atmospheric Particulate Matter (PM) is one of the leading environmental risk factors for the global burden of disease. Increasing epidemiological studies demonstrated that PM plays a significant role in CNS demyelinating disorders; however, there is no direct testimony of this, and yet the molecular mechanism by which the occurrence remains unclear. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that PM exposure aggravates neuroinflammation, myelin injury, and dysfunction of movement coordination ability via boosting microglial pro-inflammatory activities, in both the pathological demyelination and physiological myelinogenesis animal models. Indeed, pharmacological disturbance combined with RNA-seq and ChIP-seq suggests that TLR-4/NF-kB signaling mediated a core network of genes that control PM-triggered microglia pathogenicity. In summary, our study defines a novel atmospheric environmental mechanism that mediates PM-aggravated microglia pathogenic activities, and establishes a systematic approach for the investigation of the effects of environmental exposure in neurologic disorders.

Data availability

Figure 1 - Source Data 1, Figure 2 - Source Data 1, Figure 3 - Source Data 1, Figure 3 - Source Data 1, Figure supplement 1 - Source Data 1 and Figure supplement 2 - Source Data 1 contain the numerical data used to generate the figures. Sequencing data are available through the NCBI Gene Expression Omnibus GSE183099.

The following data sets were generated

Article and author information

Author details

  1. Bing Han

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xing Li

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruo-Song Ai

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Si-Ying Deng

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ze-Qing Ye

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xin Deng

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Wen Ma

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shun Xiao

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jing-Zhi Wang

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Li-Mei Wang

    First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Chong Xie

    Shanghai Jiaotong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Yan Zhang

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Yan Xu

    Shaanxi Normal University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Yuan Zhang

    Shaanxi Normal University, Xi'an, China
    For correspondence
    yuanzhang_bio@126.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2463-4599

Funding

National Natural Science Foundation of China (82071396)

  • Yuan Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures and protocols of mice were approved by the Committee on the Ethics of Animal Experiments of Shaanxi Normal University (No. ECES-2015-0247) and were carried out in accordance with the approved institutional guidelines and regulations. C57BL/6 mice (8-10 weeks of age) were purchased from the Fourth Military University (Xi'an, China).

Copyright

© 2022, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,164
    views
  • 192
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bing Han
  2. Xing Li
  3. Ruo-Song Ai
  4. Si-Ying Deng
  5. Ze-Qing Ye
  6. Xin Deng
  7. Wen Ma
  8. Shun Xiao
  9. Jing-Zhi Wang
  10. Li-Mei Wang
  11. Chong Xie
  12. Yan Zhang
  13. Yan Xu
  14. Yuan Zhang
(2022)
Atmospheric particulate matter aggravates CNS demyelination through involvement of TLR-4/NF-kB signaling and microglial activation
eLife 11:e72247.
https://doi.org/10.7554/eLife.72247

Share this article

https://doi.org/10.7554/eLife.72247

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.