Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice

  1. Laura Medina-Ruiz  Is a corresponding author
  2. Robin Bartolini
  3. Gillian J Wilson
  4. Douglas P Dyer
  5. Francesca Vidler
  6. Catherine E Hughes
  7. Fabian Schuette
  8. Samantha Love
  9. Marieke Pingen
  10. Alan James Hayes
  11. Jun Fu
  12. Adrian Francis Stewart
  13. Gerard J Graham  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. University of Manchester, United Kingdom
  3. Shandong University, China
  4. Technische Universität Dresden, Germany

Abstract

Inflammatory chemokines and their receptors are central to the development of inflammatory/immune pathologies. The apparent complexity of this system, coupled with lack of appropriate in vivo models, has limited our understanding of how chemokines orchestrate inflammatory responses and has hampered attempts at targeting this system in inflammatory disease. Novel approaches are therefore needed to provide crucial biological, and therapeutic, insights into the chemokine-chemokine receptor family. Here, we report the generation of transgenic multi-chemokine receptor reporter mice in which spectrally-distinct fluorescent reporters mark expression of CCRs 1, 2, 3 and 5, key receptors for myeloid cell recruitment in inflammation. Analysis of these animals has allowed us to define, for the first time, individual and combinatorial receptor expression patterns on myeloid cells in resting and inflamed conditions. Our results demonstrate that chemokine receptor expression is highly specific, and more selective than previously anticipated.

Data availability

Data relating to this study are available on Dryad (https://doi.org/10.5061/dryad.3r2280gjs). Mouse lines generated in this study will be available, on request, from the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Laura Medina-Ruiz

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Laura.medina-ruiz@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2934-534X
  2. Robin Bartolini

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gillian J Wilson

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas P Dyer

    Institute of Infection, Immunity and Inflammation, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Francesca Vidler

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Catherine E Hughes

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Fabian Schuette

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Samantha Love

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Marieke Pingen

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Alan James Hayes

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2708-6230
  11. Jun Fu

    Shandong University-HelmhoInstitute of Infection, Immunity and Inflammationof Biotechnology, Shandong University, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Adrian Francis Stewart

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4754-1707
  13. Gerard J Graham

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    gerard.graham@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7801-204X

Funding

Wellcome Trust (217093/Z/19/Z)

  • Laura Medina-Ruiz
  • Robin Bartolini
  • Douglas P Dyer
  • Francesca Vidler
  • Catherine E Hughes
  • Fabian Schuette
  • Marieke Pingen
  • Gerard J Graham

Medical Research Council (MRV0109721)

  • Samantha Love
  • Marieke Pingen
  • Alan James Hayes
  • Gerard J Graham

Max-Planck-Institute for Cell Biology and Genetics (open access funding)

  • Adrian Francis Stewart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out under the auspices of a UK Home Office Project License and were approved by the local University of Glasgow Ethical Review Committee.

Copyright

© 2022, Medina-Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,062
    views
  • 402
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Medina-Ruiz
  2. Robin Bartolini
  3. Gillian J Wilson
  4. Douglas P Dyer
  5. Francesca Vidler
  6. Catherine E Hughes
  7. Fabian Schuette
  8. Samantha Love
  9. Marieke Pingen
  10. Alan James Hayes
  11. Jun Fu
  12. Adrian Francis Stewart
  13. Gerard J Graham
(2022)
Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice
eLife 11:e72418.
https://doi.org/10.7554/eLife.72418

Share this article

https://doi.org/10.7554/eLife.72418

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.