Patient-specific Boolean models of signalling networks guide personalised treatments

  1. Arnau Montagud  Is a corresponding author
  2. Jonas Béal
  3. Luis Tobalina
  4. Pauline Traynard
  5. Vigneshwari Subramanian
  6. Bence Szalai
  7. Róbert Alföldi
  8. László Puskás
  9. Alfonso Valencia
  10. Emmanuel Barillot
  11. Julio Saez-Rodriguez
  12. Laurence Calzone  Is a corresponding author
  1. Barcelona Supercomputing Center (BSC), Spain
  2. Institut Curie, PSL Research University, France
  3. RWTH Aachen University, Germany
  4. Semmelweis University, Hungary
  5. Astridbio Technologies Ltd, Hungary
  6. Heidelberg University, Germany

Abstract

Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell-line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell-line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.

Data availability

Code (and processed data) to reproduce the analyses can be found in a dedicated GitHub (https://github.com/ArnauMontagud/PROFILE_v2), some of the code used in the work can be found in other GitHub repositories (https://github.com/sysbio-curie/PROFILE; https://github.com/sysbio-curie/Logical_modelling_pipeline).The model built can be accessed on the SuppFile1 and on BioModels and GINsim model repositories (https://www.ebi.ac.uk/biomodels/MODEL2106070001; http://ginsim.org/model/signalling-prostate-cancer).

The following previously published data sets were used

Article and author information

Author details

  1. Arnau Montagud

    Barcelona Supercomputing Center (BSC), Barcelona, Spain
    For correspondence
    arnau.montagud@bsc.es
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7696-1241
  2. Jonas Béal

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  3. Luis Tobalina

    Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
    Competing interests
    Luis Tobalina, is a full-time employee and shareholder of AstraZeneca..
  4. Pauline Traynard

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  5. Vigneshwari Subramanian

    Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
    Competing interests
    Vigneshwari Subramanian, is a full-time employee of AstraZeneca..
  6. Bence Szalai

    Department of Physiology, Semmelweis University, Budapest, Hungary
    Competing interests
    No competing interests declared.
  7. Róbert Alföldi

    Astridbio Technologies Ltd, Szeged, Hungary
    Competing interests
    Róbert Alföldi, is CEO of Astridbio Technologies Ltd..
  8. László Puskás

    Astridbio Technologies Ltd, Szeged, Hungary
    Competing interests
    László Puskás, is a scientific advisor of Astridbio Technologies Ltd..
  9. Alfonso Valencia

    Barcelona Supercomputing Center (BSC), Barcelona, Spain
    Competing interests
    Alfonso Valencia, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8937-6789
  10. Emmanuel Barillot

    Institut Curie, PSL Research University, Paris, France
    Competing interests
    No competing interests declared.
  11. Julio Saez-Rodriguez

    Institute of Computational Biomedicine, Heidelberg University, Heidelberg, Germany
    Competing interests
    Julio Saez-Rodriguez, receives funding from GSK and Sanofi and consultant fees from Travere Therapeutics. The other authors declare no conflicts of interest.-.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8552-8976
  12. Laurence Calzone

    Institut Curie, PSL Research University, Paris, France
    For correspondence
    Laurence.Calzone@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7835-1148

Funding

European Commission (H2020-PHC-668858)

  • Arnau Montagud
  • Jonas Béal
  • Luis Tobalina
  • Pauline Traynard
  • Vigneshwari Subramanian
  • Bence Szalai
  • Róbert Alföldi
  • László Puskás
  • Emmanuel Barillot
  • Julio Saez-Rodriguez
  • Laurence Calzone

European Commission (H2020-ICT-825070)

  • Arnau Montagud
  • Alfonso Valencia

European Commission (H2020-ICT-951773)

  • Arnau Montagud
  • Alfonso Valencia
  • Emmanuel Barillot
  • Julio Saez-Rodriguez
  • Laurence Calzone

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Montagud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,051
    views
  • 636
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnau Montagud
  2. Jonas Béal
  3. Luis Tobalina
  4. Pauline Traynard
  5. Vigneshwari Subramanian
  6. Bence Szalai
  7. Róbert Alföldi
  8. László Puskás
  9. Alfonso Valencia
  10. Emmanuel Barillot
  11. Julio Saez-Rodriguez
  12. Laurence Calzone
(2022)
Patient-specific Boolean models of signalling networks guide personalised treatments
eLife 11:e72626.
https://doi.org/10.7554/eLife.72626

Share this article

https://doi.org/10.7554/eLife.72626

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.