Nucleoporin107 mediates female sexual differentiation via Dsx

  1. Tikva Shore
  2. Tgst Levi
  3. Rachel Kalifa
  4. Amatzia Dreifuss
  5. Dina Rekler
  6. Ariella Weinberg-Shukron
  7. Yuval Nevo
  8. Tzofia Bialistoky
  9. Victoria Moyal
  10. Merav Yaffa Gold
  11. Shira Leebhoff
  12. David Zangen
  13. Girish Deshpande  Is a corresponding author
  14. Offer Gerlitz  Is a corresponding author
  1. The Hebrew University, Israel
  2. Hebrew University Hadassah Medical School, Israel
  3. The Hadassah Hebrew University Medical Center, Israel
  4. Hadassah Hebrew University Medical Center, Israel
  5. Princeton University, United States

Abstract

We recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of BMP signaling hyperactivation. Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex and tissue specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.

Data availability

All raw RNA-seq data, as well as software versions and parameters, have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE141094

The following data sets were generated

Article and author information

Author details

  1. Tikva Shore

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7140-0226
  2. Tgst Levi

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9221-1873
  3. Rachel Kalifa

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Amatzia Dreifuss

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Dina Rekler

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Ariella Weinberg-Shukron

    Medical Genetics Institute, Hebrew University Hadassah Medical School, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuval Nevo

    Bioinformatics Unit of the I-CORE Computation Center, The Hadassah Hebrew University Medical Center, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Tzofia Bialistoky

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Victoria Moyal

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Merav Yaffa Gold

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9978-2262
  11. Shira Leebhoff

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. David Zangen

    Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Girish Deshpande

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    gdeshpande@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Offer Gerlitz

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    For correspondence
    offerg@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1574-2088

Funding

Israel Science Foundation (1788/15)

  • David Zangen
  • Offer Gerlitz

Israel Science Foundation (1814/19-)

  • David Zangen
  • Offer Gerlitz

National Institute of Health (093913)

  • Girish Deshpande

Ministry of Science and Technology

  • Tgst Levi

Ministry of Aliyah and Integration

  • Tgst Levi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Shore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,153
    views
  • 143
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tikva Shore
  2. Tgst Levi
  3. Rachel Kalifa
  4. Amatzia Dreifuss
  5. Dina Rekler
  6. Ariella Weinberg-Shukron
  7. Yuval Nevo
  8. Tzofia Bialistoky
  9. Victoria Moyal
  10. Merav Yaffa Gold
  11. Shira Leebhoff
  12. David Zangen
  13. Girish Deshpande
  14. Offer Gerlitz
(2022)
Nucleoporin107 mediates female sexual differentiation via Dsx
eLife 11:e72632.
https://doi.org/10.7554/eLife.72632

Share this article

https://doi.org/10.7554/eLife.72632

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.