Ecdysone coordinates plastic growth with robust pattern in the developing wing

  1. André Nogueira Alves
  2. Marisa Matheus Oliveira
  3. Takashi Koyama
  4. Alexander Shingleton  Is a corresponding author
  5. Christen K Mirth  Is a corresponding author
  1. Monash University, Australia
  2. Instituto Gulbenkian de Ciência, Portugal
  3. University of Illinois at Chicago, United States

Abstract

Animals develop in unpredictable, variable environments. In response to environmental change some aspects of development adjust to generate plastic phenotypes. Other aspects of development, however, are buffered against environmental change to produce robust phenotypes. How organ development is coordinated to accommodate both plastic and robust developmental responses is poorly understood. Here, we demonstrate that the steroid hormone ecdysone coordinates both plasticity of organ size and robustness of organ pattern in the developing wings of the fruit fly Drosophila melanogaster. Using fed and starved larvae that lack prothoracic glands, which synthesise ecdysone, we show that nutrition regulates growth both via ecdysone and via an ecdysone-independent mechanism, while nutrition regulates patterning only via ecdysone. We then demonstrate that growth shows a graded response to ecdysone concentration, while patterning shows a threshold response. Collectively, these data support a model where nutritionally-regulated ecdysone fluctuations confer plasticity by regulating disc growth in response to basal ecdysone levels, and confers robustness by initiating patterning only once ecdysone peaks exceeds a threshold concentration. This could represent a generalizable mechanism through which hormones coordinate plastic growth with robust patterning in the face of environmental change.

Data availability

All data and R scripts for analysis have been deposited on Figshare (DOI: 10.26180/13393676).

The following data sets were generated

Article and author information

Author details

  1. André Nogueira Alves

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Marisa Matheus Oliveira

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Takashi Koyama

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4203-114X
  4. Alexander Shingleton

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    For correspondence
    ashingle@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Christen K Mirth

    School of Biological Sciences, Monash University, Melbourne, Australia
    For correspondence
    christen.mirth@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9765-4021

Funding

Australian Research Council (FT170100259)

  • Christen K Mirth

National Science Foundation (IOS-0919855)

  • Alexander Shingleton

National Science Foundation (IOS-1557638)

  • Alexander Shingleton

National Science Foundation (IOS-1952385)

  • Alexander Shingleton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Nogueira Alves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,938
    views
  • 260
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. André Nogueira Alves
  2. Marisa Matheus Oliveira
  3. Takashi Koyama
  4. Alexander Shingleton
  5. Christen K Mirth
(2022)
Ecdysone coordinates plastic growth with robust pattern in the developing wing
eLife 11:e72666.
https://doi.org/10.7554/eLife.72666

Share this article

https://doi.org/10.7554/eLife.72666

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.