Development, validation, and application of a machine learning model to estimate salt consumption in 54 countries

  1. Wilmer Cristobal Guzman-Vilca
  2. Manuel Castillo-Cara
  3. Rodrigo M Carrillo-Larco  Is a corresponding author
  1. School of Medicine Alberto Hurtado, Universidad Peruana Cayetano Heredia, Peru
  2. CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Peru
  3. Sociedad Científica de Estudiantes de Medicina Cayetano Heredia (SOCEMCH), Universidad Peruana Cayetano Heredia, Peru
  4. Universidad de Lima, Peru
  5. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
6 figures, 13 tables and 2 additional files

Figures

Observed and predicted mean salt intake (g/day) by sex in each survey included in the machine learning (ML) model development.

Exact estimates (along with their 95% CI) are presented in Appendix 1—table 2. These results were computed with the test dataset only. Results are for the HuR algorithm, which was the model with the best performance.

Predicted mean salt intake (g/day) by sex in each of the 54 national surveys included in the application of the model herein developed.

Exact estimates (along with their 95% CI) are presented in Appendix 1—table 7. Countries are presented in ascending order based on their overall mean salt intake (i.e., countries with the highest mean salt intake are at the bottom).

Appendix 1—figure 1
Flowchart of data cleaning and inclusion criteria for model derivation.
Appendix 2—figure 1
Pipeline for data management and model development.

PCA, primary component analysis; LiR, linear regression; HuR, Hubber regressor; RiR, ridge regressor; MLP, multilayer perceptron; SVR, support vector regressor; KNN, k-nearest neighbors; RF, random forest; GBM, gradient boost machine; XGB, extreme gradient boosting; NN, neural network.

Appendix 2—figure 2
Neural network implementation.
Appendix 2—figure 3
Comparison between mean difference between observed and predicted salt intake across the best algorithms.

CNN, customized neural network; HuR: Hubber regressor; MLP, multilayer perceptron.

Tables

Appendix 1—table 1
Weighted distribution of predictors in each survey included in the machine learning model development.
CountryYearSample sizeMean age (years)Age range (years)Proportion of men (%)Mean, minimum and maximum values of SBP (mmHg)Mean, minimum, and maximum values of DBP (mmHg)Mean, minimum, and maximum values of weight (kg)Mean, minimum, and maximum values of height (m)Mean, minimum, and maximum values of urinary sodium (mmol/L)Mean, minimum, and maximum values of urinary creatinine (mmol/L)
Armenia201610744018–6949.7129 (86–238)85 (49–148)70.9 (35–139)1.66 (1.27–1.89)128.6 (10.6–237.6)10.1 (1.9–27.3)
Azerbaijan201723593918–6949.5126 (82–230)81 (48–142)73.1 (36–174)1.67 (1.15–1.98)167.7 (2–389)11.9 (1.8–31.8)
Bangladesh201862003918–6946.9121 (72–251)79 (32–147)55.9 (28–111)1.56 (1–2.11)119.6 (4–422)8.4 (2.2–32.3)
Belarus201745034318–6947.1135 (88–257)85 (54–147)77.7 (41–144)1.7 (1.05–1.99)149.5 (10.5–371.4)12.2 (1.8–32.7)
Bhutan201461633818–6959.2126 (75–228)85 (46–142)61.4 (23–115)1.6 (1.11–1.96)142.1 (6–388)8.1 (1.9–29.7)
Bhutan201961633415–6956.8124 (85–224)82 (44–137)61.9 (28.5–140)1.58 (1.07–1.92)129.9 (4.7–444.9)10.4 (1.8–32.7)
Brunei Darussalam201616353518–6951.4123 (76–218)78 (46–138)69 (31.2–138.3)1.59 (1.32–1.84)122.6 (19.9–329)12.6 (1.8–32.6)
Chile201729523915–6949.8120 (81–226)74 (44–130)75.7 (38.3–146.9)1.63 (1.34–1.96)135.8 (10–324)12.1 (1.8–32.2)
Jordan201910403718–6950.2118 (75–200)78 (50–120)76.3 (35.5–159.5)1.66 (1.36–1.95)165.4 (13–365)13.6 (1.8–32.5)
Lebanon20179984217–6948.7129 (80–214)77 (35–123)78.3 (40–141)1.68 (1.2–1.96)124.4 (4–385)11.5 (1.9–32)
Malawi201716013518–6956.4122 (74–222)76 (40–142)58.5 (33.6–119)1.61 (1.36–1.96)186.5 (11–399.9)10.7 (1.9–32.4)
Mongolia201375054215–6450.3129 (88–220)82 (50–134)71 (30.6–138)1.62 (1.27–1.92)134.1 (13.1–515)10.9 (1.8–31.9)
Mongolia201975053615–6950.9120 (76–254)77 (48–143)68.4 (29–159)1.64 (1.34–1.98)117 (2.1–348.9)7.5 (1.8–28.3)
Morocco201734354018–6950.6128 (83–228)78 (40–139)70.9 (35–168)1.66 (1.34–1.95)122.3 (26.3–575.2)10.3 (1.8–31.4)
Nepal201925603615–6941124 (81–239)81 (55–146)54.6 (26–160)1.55 (1.21–2.03)140.9 (3–437)5.6 (1.8–25.5)
SolomonIslands20151723818–6961.4121 (88–188)77 (52–104)67.9 (38.5–122)1.61 (1.41–1.8)99.3 (7–250)9.7 (1.9–28.4)
Sudan20165713618–6955.9128 (89–231)85 (58–132)72.2 (35.6–174)1.67 (1.42–1.92)128.5 (5–459)14 (1.9–32.4)
Tokelau20141813518–6356125 (76–184)79 (53–128)94.8 (58–158.3)1.71 (1.16–1.88)62.4 (20–265)5 (2–7.7)
Tonga20177554018–6935.7131 (96–208)83 (53–148)98.6 (48.1–181)1.69 (1.4–1.94)101.9 (4–327)15.3 (1.8–32.7)
Turkmenistan201835843718–6952.7127 (88–268)83 (54–149)72.4 (39–142)1.68 (1.16–1.98)109.2 (10–163)11.1 (4.5–18.3)
Zambia201724883318–6950.3125 (73–248)77 (36–148)60.9 (33.8–150)1.62 (1.01–2.07)137.2 (10–375)12.2 (1.8–32.4)
Appendix 1—table 2
Observed and predicted mean salt intake (g/day) by sex in each survey included in the machine learning model development.
CountryYearSexMean salt intakeMean salt intake lower 95% confidence intervalMean salt intake upper 95% confidence intervalCategory
Armenia2016Men9.249.049.45ML predicted
Armenia2016Men9.469.119.81Observed
Armenia2016Women7.437.37.57ML predicted
Armenia2016Women7.447.267.62Observed
Azerbaijan2017Men9.439.339.53ML predicted
Azerbaijan2017Men10.3910.0610.72Observed
Azerbaijan2017Women7.437.317.55ML predicted
Azerbaijan2017Women7.947.758.14Observed
Bangladesh2018Men8.878.88.93ML predicted
Bangladesh2018Men8.598.428.75Observed
Bangladesh2018Women7.187.137.24ML predicted
Bangladesh2018Women7.277.177.37Observed
Belarus2017Men9.499.429.56ML predicted
Belarus2017Men10.149.9410.35Observed
Belarus2017Women7.537.457.61ML predicted
Belarus2017Women7.567.417.72Observed
Bhutan2014Men9.149.049.25ML predicted
Bhutan2014Men9.589.279.88Observed
Bhutan2014Women7.387.37.46ML predicted
Bhutan2014Women8.17.948.27Observed
Bhutan2019Men9.339.259.41ML predicted
Bhutan2019Men9.18.859.35Observed
Bhutan2019Women7.437.367.49ML predicted
Bhutan2019Women7.537.337.73Observed
Brunei Darussalam2016Men9.789.579.99ML predicted
Brunei Darussalam2016Men8.958.669.25Observed
Brunei Darussalam2016Women7.647.57.77ML predicted
Brunei Darussalam2016Women7.37.057.54Observed
Chile2017Men9.659.569.75ML predicted
Chile2017Men9.759.1810.31Observed
Chile2017Women7.867.87.93ML predicted
Chile2017Women7.647.457.83Observed
Jordan2019Men9.319.039.6ML predicted
Jordan2019Men10.29.5210.88Observed
Jordan2019Women7.787.538.03ML predicted
Jordan2019Women8.17.758.45Observed
Lebanon2017Men9.889.6210.14ML predicted
Lebanon2017Men9.539.069.99Observed
Lebanon2017Women7.637.397.86ML predicted
Lebanon2017Women7.517.077.95Observed
Malawi2017Men8.768.668.86ML predicted
Malawi2017Men9.549.169.91Observed
Malawi2017Women7.16.977.24ML predicted
Malawi2017Women8.348.038.64Observed
Mongolia2013Men9.59.329.68ML predicted
Mongolia2013Men9.839.3410.32Observed
Mongolia2013Women7.637.517.74ML predicted
Mongolia2013Women7.797.67.97Observed
Mongolia2019Men9.329.239.42ML predicted
Mongolia2019Men9.689.59.85Observed
Mongolia2019Women7.397.327.46ML predicted
Mongolia2019Women7.467.347.59Observed
Morocco2017Men9.068.979.15ML predicted
Morocco2017Men9.038.829.24Observed
Morocco2017Women7.497.437.56ML predicted
Morocco2017Women7.477.357.59Observed
Nepal2019Men98.839.18ML predicted
Nepal2019Men9.559.229.87Observed
Nepal2019Women7.076.987.15ML predicted
Nepal2019Women7.847.658.04Observed
Solomon Islands2015Men9.429.259.59ML predicted
Solomon Islands2015Men8.748.089.4Observed
Solomon Islands2015Women7.547.297.79ML predicted
Solomon Islands2015Women7.036.427.64Observed
Sudan2016Men9.078.769.37ML predicted
Sudan2016Men8.537.739.33Observed
Sudan2016Women7.627.277.97ML predicted
Sudan2016Women7.497.097.88Observed
Tokelau2014Men10.6410.3410.93ML predicted
Tokelau2014Men10.2910.1810.4Observed
Tokelau2014Women8.968.719.21ML predicted
Tokelau2014Women8.127.618.63Observed
Tonga2017Men10.510.3110.69ML predicted
Tonga2017Men9.198.899.48Observed
Tonga2017Women8.858.659.04ML predicted
Tonga2017Women7.637.457.81Observed
Turkmenistan2018Men9.389.289.48ML predicted
Turkmenistan2018Men8.948.799.09Observed
Turkmenistan2018Women7.27.137.27ML predicted
Turkmenistan2018Women6.766.686.83Observed
Zambia2017Men8.928.849ML predicted
Zambia2017Men8.458.158.75Observed
Zambia2017Women7.046.967.12ML predicted
Zambia2017Women7.016.817.22Observed
  1. ML: machine learning; SBP: systolic blood pressure; DBP: diastolic blood pressure.

Appendix 1—table 3
Observed and predicted mean salt intake (g/day) by age, body mass index (BMI) category, and blood pressure status across all surveys included in the machine learning model development dataset.
AttributedSalt consumption (g/day) observed using surveys included in the derivation modelSalt consumption (g/day) estimated using the surveys included in the derivation model
Meanp-Value for independent t-test or ANOVA testMeanp-Value for independent t-test or ANOVA test
Age <30 years7.9<0.0018.0< 0.001
Age ≥ 30 years8.48.3
BMI <18.5 kg/m27.0< 0.0017.0< 0.001
BMI 18.5–24.9 kg/m27.87.7
BMI 25.0–29.9 kg/m28.68.4
BMI ≥ 30 kg/m29.39.3
Raised blood pressure ( ≥ 140/90 mmHg)8.7< 0.0018.6< 0.001
No raised blood pressure8.28.1
  1. These results do not consider the survey sampling design.

Appendix 1—table 4
Mean difference (g/day) between observed and predicted salt intake by sex in each survey included in the machine learning (ML) model development.
CountryYearSexMean differenceMean difference lower 95% confidence intervalMean difference upper 95% confidence intervalp-Value
Armenia2016Men0.22–0.060.50.0007
Armenia2016Women0.01–0.120.130.1953
Azerbaijan2017Men0.960.671.26< 0.0001
Azerbaijan2017Women0.520.370.66< 0.0001
Bangladesh2018Men–0.28–0.44–0.12< 0.0001
Bangladesh2018Women0.09–0.010.190.0004
Belarus2017Men0.660.470.84< 0.0001
Belarus2017Women0.03–0.090.160.6258
Bhutan2014Men0.430.170.7< 0.0001
Bhutan2014Women0.720.570.88< 0.0001
Bhutan2019Men–0.23–0.480.020.0007
Bhutan2019Women0.1–0.080.280.7508
Brunei Darussalam2016Men–0.82–1.06–0.58< 0.0001
Brunei Darussalam2016Women–0.34–0.55–0.13< 0.0001
Chile2017Men0.1–0.390.580.0001
Chile2017Women–0.22–0.36–0.08< 0.0001
Jordan2019Men0.890.311.460.0065
Jordan2019Women0.3200.640.4142
Lebanon2017Men–0.36–0.850.140.2074
Lebanon2017Women–0.12–0.450.220.1591
Malawi2017Men0.770.391.16< 0.0001
Malawi2017Women1.230.951.51< 0.0001
Mongolia2013Men0.33–0.020.680.0184
Mongolia2013Women0.16–0.030.350.2655
Mongolia2019Men0.350.230.48< 0.0001
Mongolia2019Women0.08–0.010.170.5155
Morocco2017Men–0.03–0.210.140.3083
Morocco2017Women–0.02–0.130.090.7259
Nepal2019Men0.540.250.83< 0.0001
Nepal2019Women0.780.610.94< 0.0001
Solomon Islands2015Men–0.68–1.26–0.10.0477
Solomon Islands2015Women–0.51–1.10.090.0539
Sudan2016Men–0.53–1.150.080.2111
Sudan2016Women–0.13–0.450.190.0674
Tokelau2014Men–0.35–0.53–0.160.2248
Tokelau2014Women–0.84–1.22–0.450.0026
Tonga2017Men–1.31–1.58–1.05< 0.0001
Tonga2017Women–1.22–1.39–1.05< 0.0001
Turkmenistan2018Men–0.44–0.52–0.36< 0.0001
Turkmenistan2018Women–0.45–0.51–0.39< 0.0001
Zambia2017Men–0.47–0.74–0.19< 0.0001
Zambia2017Women–0.02–0.210.170.3438
  1. p-Value for paired t Student test between observed and predicted.

Appendix 1—table 5
Observed mean salt intake (g/day) by equation and sex in each survey included in the machine learning (ML) model development.
CountryYearSexMean salt intakeMean salt intake lower 95% confidence intervalMean salt intake upper 95% confidence intervalCategory
Armenia2016Men9.469.119.81Observed_intersalt
Armenia2016Men14.5813.7115.44Observed_kawasaki
Armenia2016Men10.219.7110.7Observed_tanaka
Armenia2016Men12.7112.1913.23Observed_toft
Armenia2016Women7.447.267.62Observed_intersalt
Armenia2016Women12.4811.8713.09Observed_kawasaki
Armenia2016Women9.989.5910.36Observed_tanaka
Armenia2016Women8.418.268.57Observed_toft
Azerbaijan2017Men10.3910.0610.72Observed_intersalt
Azerbaijan2017Men14.8214.2115.42Observed_kawasaki
Azerbaijan2017Men10.319.9810.64Observed_tanaka
Azerbaijan2017Men12.8112.4513.18Observed_toft
Azerbaijan2017Women7.947.758.14Observed_intersalt
Azerbaijan2017Women12.6512.2213.08Observed_kawasaki
Azerbaijan2017Women10.149.8710.41Observed_tanaka
Azerbaijan2017Women8.458.338.56Observed_toft
Bangladesh2018Men8.598.428.75Observed_intersalt
Bangladesh2018Men12.5912.2512.93Observed_kawasaki
Bangladesh2018Men8.818.629.01Observed_tanaka
Bangladesh2018Men11.6211.411.85Observed_toft
Bangladesh2018Women7.277.177.37Observed_intersalt
Bangladesh2018Women12.0911.7812.4Observed_kawasaki
Bangladesh2018Women98.829.19Observed_tanaka
Bangladesh2018Women8.338.258.42Observed_toft
Belarus2017Men10.149.9410.35Observed_intersalt
Belarus2017Men14.2213.8514.6Observed_kawasaki
Belarus2017Men10.169.9510.38Observed_tanaka
Belarus2017Men12.4612.2412.69Observed_toft
Belarus2017Women7.567.417.72Observed_intersalt
Belarus2017Women11.4311.111.75Observed_kawasaki
Belarus2017Women9.599.379.8Observed_tanaka
Belarus2017Women8.0988.18Observed_toft
Bhutan2014Men9.589.279.88Observed_intersalt
Bhutan2014Men15.0514.2315.87Observed_kawasaki
Bhutan2014Men10.069.6410.48Observed_tanaka
Bhutan2014Men1312.5113.49Observed_toft
Bhutan2014Women8.17.948.27Observed_intersalt
Bhutan2014Women14.2413.7214.76Observed_kawasaki
Bhutan2014Women10.5410.2210.86Observed_tanaka
Bhutan2014Women8.858.728.99Observed_toft
Bhutan2019Men9.18.859.35Observed_intersalt
Bhutan2019Men12.8112.2313.39Observed_kawasaki
Bhutan2019Men8.818.519.11Observed_tanaka
Bhutan2019Men11.6211.2811.97Observed_toft
Bhutan2019Women7.537.337.73Observed_intersalt
Bhutan2019Women11.5911.2211.96Observed_kawasaki
Bhutan2019Women8.98.679.12Observed_tanaka
Bhutan2019Women8.188.078.28Observed_toft
Brunei Darussalam2016Men8.958.669.25Observed_intersalt
Brunei Darussalam2016Men11.5110.9512.08Observed_kawasaki
Brunei Darussalam2016Men8.177.898.45Observed_tanaka
Brunei Darussalam2016Men10.7910.4411.14Observed_toft
Brunei Darussalam2016Women7.37.057.54Observed_intersalt
Brunei Darussalam2016Women10.5210.0211.01Observed_kawasaki
Brunei Darussalam2016Women8.388.088.69Observed_tanaka
Brunei Darussalam2016Women7.887.738.03Observed_toft
Chile2017Men9.759.1810.31Observed_intersalt
Chile2017Men12.8612.0713.66Observed_kawasaki
Chile2017Men9.258.849.66Observed_tanaka
Chile2017Men11.6611.1412.17Observed_toft
Chile2017Women7.647.457.83Observed_intersalt
Chile2017Women11.1110.8111.4Observed_kawasaki
Chile2017Women9.138.939.32Observed_tanaka
Chile2017Women8.067.978.15Observed_toft
Jordan2019Men10.29.5210.88Observed_intersalt
Jordan2019Men13.9812.7315.23Observed_kawasaki
Jordan2019Men9.849.1710.51Observed_tanaka
Jordan2019Men12.2911.5613.02Observed_toft
Jordan2019Women8.17.758.45Observed_intersalt
Jordan2019Women12.111.4812.72Observed_kawasaki
Jordan2019Women9.749.3410.13Observed_tanaka
Jordan2019Women8.348.178.5Observed_toft
Lebanon2017Men9.539.069.99Observed_intersalt
Lebanon2017Men12.7211.6513.79Observed_kawasaki
Lebanon2017Men9.228.619.84Observed_tanaka
Lebanon2017Men11.4810.8212.14Observed_toft
Lebanon2017Women7.517.077.95Observed_intersalt
Lebanon2017Women11.3510.4512.25Observed_kawasaki
Lebanon2017Women9.378.7510Observed_tanaka
Lebanon2017Women8.037.768.3Observed_toft
Malawi2017Men9.549.169.91Observed_intersalt
Malawi2017Men14.0213.414.64Observed_kawasaki
Malawi2017Men9.439.089.77Observed_tanaka
Malawi2017Men12.412.0412.77Observed_toft
Malawi2017Women8.348.038.64Observed_intersalt
Malawi2017Women13.4312.7614.11Observed_kawasaki
Malawi2017Women10.179.7510.58Observed_tanaka
Malawi2017Women8.648.478.82Observed_toft
Mongolia2013Men9.839.3410.32Observed_intersalt
Mongolia2013Men13.3712.7414.01Observed_kawasaki
Mongolia2013Men9.489.139.83Observed_tanaka
Mongolia2013Men12.0411.6412.45Observed_toft
Mongolia2013Women7.797.67.97Observed_intersalt
Mongolia2013Women11.9211.3412.5Observed_kawasaki
Mongolia2013Women9.549.169.92Observed_tanaka
Mongolia2013Women8.248.088.4Observed_toft
Mongolia2019Men9.689.59.85Observed_intersalt
Mongolia2019Men14.8314.4915.17Observed_kawasaki
Mongolia2019Men10.149.9510.32Observed_tanaka
Mongolia2019Men12.8412.6413.05Observed_toft
Mongolia2019Women7.467.347.59Observed_intersalt
Mongolia2019Women12.1311.8112.44Observed_kawasaki
Mongolia2019Women9.639.439.84Observed_tanaka
Mongolia2019Women8.318.238.4Observed_toft
Morocco2017Men9.038.829.24Observed_intersalt
Morocco2017Men13.0412.6313.44Observed_kawasaki
Morocco2017Men9.339.19.56Observed_tanaka
Morocco2017Men11.7511.512Observed_toft
Morocco2017Women7.477.357.59Observed_intersalt
Morocco2017Women11.7211.4112.04Observed_kawasaki
Morocco2017Women9.489.289.68Observed_tanaka
Morocco2017Women8.188.098.26Observed_toft
Nepal2019Men9.559.229.87Observed_intersalt
Nepal2019Men16.615.9217.27Observed_kawasaki
Nepal2019Men10.6910.3311.04Observed_tanaka
Nepal2019Men14.0413.6414.44Observed_toft
Nepal2019Women7.847.658.04Observed_intersalt
Nepal2019Women15.3514.8215.88Observed_kawasaki
Nepal2019Women10.910.5711.24Observed_tanaka
Nepal2019Women9.128.999.25Observed_toft
Solomon Islands2015Men8.748.089.4Observed_intersalt
Solomon Islands2015Men12.9911.0614.93Observed_kawasaki
Solomon Islands2015Men8.877.979.77Observed_tanaka
Solomon Islands2015Men11.6210.4312.8Observed_toft
Solomon Islands2015Women7.036.427.64Observed_intersalt
Solomon Islands2015Women11.388.7813.98Observed_kawasaki
Solomon Islands2015Women8.987.3410.61Observed_tanaka
Solomon Islands2015Women7.957.268.64Observed_toft
Sudan2016Men8.537.739.33Observed_intersalt
Sudan2016Men11.6610.6612.66Observed_kawasaki
Sudan2016Men8.497.919.08Observed_tanaka
Sudan2016Men10.8310.1711.5Observed_toft
Sudan2016Women7.497.097.88Observed_intersalt
Sudan2016Women11.310.612.01Observed_kawasaki
Sudan2016Women9.318.859.78Observed_tanaka
Sudan2016Women8.097.898.3Observed_toft
Tokelau2014Men10.2910.1810.4Observed_intersalt
Tokelau2014Men14.3313.1615.5Observed_kawasaki
Tokelau2014Men10.19.4810.72Observed_tanaka
Tokelau2014Men12.4211.7113.14Observed_toft
Tokelau2014Women8.127.618.63Observed_intersalt
Tokelau2014Women11.49.8512.95Observed_kawasaki
Tokelau2014Women9.718.6910.72Observed_tanaka
Tokelau2014Women8.157.768.54Observed_toft
Tonga2017Men9.198.899.48Observed_intersalt
Tonga2017Men10.069.1710.95Observed_kawasaki
Tonga2017Men7.727.228.22Observed_tanaka
Tonga2017Men9.779.1910.35Observed_toft
Tonga2017Women7.637.457.81Observed_intersalt
Tonga2017Women9.378.889.87Observed_kawasaki
Tonga2017Women8.418.068.76Observed_tanaka
Tonga2017Women7.537.377.68Observed_toft
Turkmenistan2018Men8.948.799.09Observed_intersalt
Turkmenistan2018Men12.1111.9312.3Observed_kawasaki
Turkmenistan2018Men8.858.748.96Observed_tanaka
Turkmenistan2018Men11.211.0911.32Observed_toft
Turkmenistan2018Women6.766.686.83Observed_intersalt
Turkmenistan2018Women10.19.9310.26Observed_kawasaki
Turkmenistan2018Women8.538.418.65Observed_tanaka
Turkmenistan2018Women7.787.737.83Observed_toft
Zambia2017Men8.458.158.75Observed_intersalt
Zambia2017Men12.712.0913.3Observed_kawasaki
Zambia2017Men8.88.469.13Observed_tanaka
Zambia2017Men11.4811.1111.86Observed_toft
Zambia2017Women7.016.817.22Observed_intersalt
Zambia2017Women11.1110.6611.56Observed_kawasaki
Zambia2017Women8.88.529.09Observed_tanaka
Zambia2017Women87.868.13Observed_toft
Appendix 1—table 6
Weighted distribution of predictors in each of the 54 national surveys included in the application of the model herein developed.
CountryYearSample sizeMean age (years)Age range (years)Proportion of men (%)Mean, minimum, and maximum values of SBP (mmHg)Mean, minimum, and maximum values of DBP (mmHg)Mean, minimum, and maximum values of weight (kg)Mean, minimum, and maximum values of height (m)
American Samoa200420434025–6450.3131 (84–230)82 (46–134)100.4 (38.6–219.1)1.69 (1.36–2.19)
Benin201548413418–6949.6126 (74–254)82 (45–142)62.3 (30–167)1.64 (1.21–1.98)
Bahamas201214004224–6449.9127 (73–248)82 (32–140)84.8 (27.9–184.9)1.67 (1.15–2.03)
Barbados20072824325–6951.9122 (86–191)80 (55–115)77.5 (40.6–232.1)1.67 (1.17–1.93)
British Virgin Islands200910674325–6454.1130 (81–226)80 (48–126)83.2 (39.6–176.9)1.7 (1.14–2.26)
Botswana201438943315–6952.1128 (84–262)80 (47–148)63.9 (31.7–171.1)1.66 (1.02–2)
Cook Islands20158793918–6446.5128 (92–194)79 (45–118)98.6 (49.1–205.1)1.69 (1.07–1.96)
Comoros201150293925–6452.6128 (82–236)79 (48–144)64.2 (23.5–166)1.61 (1–2.15)
Cabo Verde200717233825–6450.3133 (86–234)80 (48–140)68.3 (35–150)1.68 (1.23–1.96)
Cayman Islands201212294224–6450.7125 (84–208)76 (46–127)82.3 (31–196)1.69 (1–2.1)
Algeria201765363818–6951.7127 (77–227)75 (32–137)73.3 (25–174)1.67 (1.02–2.05)
Ecuador201844664018–6949.4120 (78–220)76 (42–130)69.2 (33.4–198.4)1.59 (1.24–1.93)
Eritrea201056514225–6917.2117 (72–230)74 (46–130)51.8 (28.1–99.1)1.6 (1.16–1.89)
Ethiopia201592703115–6956.1120 (71–250)78 (30–142)54.4 (20–99.5)1.63 (1.05–2)
Fiji201124924225–6451130 (84–228)80 (39–143)78.6 (30.3–198.1)1.68 (1.03–1.94)
Gambia201034963825–6450.4130 (85–252)80 (44–144)64.8 (26.5–168.9)1.64 (1-2)
Grenada201110554125–6450.7131 (71–212)80 (50–128)77.6 (40.8–158.8)1.7 (1.32–2.49)
Guyana201626253718–6952126 (74–245)78 (37–149)69.9 (26.4–198)1.63 (1.01–2.07)
Iraq201536553518–6953.6128 (78–225)83 (45–150)76.5 (36.6–187.2)1.65 (1.01–1.97)
Kenya201542703416–6950.6125 (76–262)81 (46–146)63.2 (30–171.3)1.65 (1.01–1.95)
Kyrgyzstan201325394125–6451.9133 (82–244)87 (56–150)71.7 (36.6–162.4)1.64 (1.38–1.95)
Cambodia201052234025–6449.4116 (70–226)72 (42–138)53.7 (21.1–111)1.57 (1.24–1.85)
Kiribati201612404018–6942.8128 (85–220)85 (49–148)81.1 (30–219)1.64 (1.22–1.89)
Kuwait201428713618–6949.5120 (70–240)77 (50–130)80.5 (37.3–195)1.65 (1.04–1.96)
Lao People’s Democratic Republic201324643916–6542.3119 (72–240)76 (30–130)54.2 (27–103.1)1.54 (1.16–1.97)
Liberia201122424025–6450.7129 (88–232)80 (32–138)65.4 (32–163)1.58 (1–2.5)
Libya200932233725–6451.5133 (74–238)79 (44–148)77 (31.7–186.2)1.67 (1–1.97)
Sri Lanka201545663918–6951.5125 (74–258)81 (36–150)58 (26.2–156.9)1.59 (1.02–1.9)
Lesotho201221623825–6449.8126 (78–250)83 (46–146)66.2 (21.5–164.6)1.61 (1.02–1.97)
Republic of Moldova201340773918–6952.5133 (83–257)85 (49–148)75 (32.5–166)1.68 (1.2–1.98)
Marshall Islands201826573917–6948.5120 (70–220)75 (40–134)74.4 (27–226.5)1.58 (1.01–2.15)
Myanmar201478924225–6450.4126 (70–252)82 (35–144)57.1 (26.3–173)1.59 (1–2.18)
Mozambique20057234124–6446139 (85–220)82 (46–143)56.7 (33.4–109.5)1.6 (1.02–1.89)
Namibia20057524125–6441.3137 (87–230)86 (50–132)63.7 (26.5–134.3)1.63 (1.12–2)
Niger200726383715–6454.1134 (70–260)82 (40–145)59.5 (24.3–162.2)1.67 (1.01–2.1)
Niue20127794015–6950.1128 (89–223)76 (44–117)91.5 (44.7–165.9)1.69 (1.17–1.96)
Nauru201610373618–6950123 (76–223)80 (46–125)92.4 (43.4–197.9)1.63 (1.41–1.86)
Palau201321484325–6453138 (87–236)85 (40–135)79.4 (32–180.6)1.62 (1.02–2.03)
French Polynesia201022393618–6450.7125 (86–230)79 (48–150)86.2 (41–193)1.7 (1.41–2)
Qatar201222873518–6450.9119 (78–203)79 (46–130)79.1 (34.4–190.5)1.64 (1.35–2)
Rwanda201368823215–6448.8121 (75–250)78 (45–140)57 (23.1–165.8)1.6 (1–1.91)
Sierra Leone200944734025–6450.3131 (72–220)81 (42–148)60 (28–185)1.62 (1–2.34)
Sao Tome and Principe200822724025–6448.4135 (78–240)82 (34–143)66.1 (30–186.2)1.64 (1.01–1.98)
Eswatini201430423115–6947.4124 (72–252)80 (42–150)67.8 (22.2–227.6)1.63 (1.01–2.02)
Togo201139953215–6449.3123 (70–251)77 (31–142)61.6 (26–165)1.64 (1.02–1.99)
Tajikistan201726433218–6953.8129 (81–267)84 (54–150)66.7 (27.8–148)1.63 (1.09–2)
Timor-Leste201424803618–6963.8130 (72–235)84 (42–136)52 (27–165)1.57 (1.24–1.83)
Tuvalu201510243918–6954.9134 (92–246)84 (48–145)91.9 (35.8–181.8)1.68 (1.17–2.06)
United Republic of Tanzania201253813925–6450.6129 (80–240)80 (40–146)60.6 (29–171.1)1.63 (1.13–1.97)
Uganda201436733518–6950.5125 (83–249)81 (50–148)59.4 (30.2–165)1.62 (1.15–2.03)
Uruguay201422073815–6447.8125 (82–232)79 (44–134)74.6 (34.3–158)1.67 (1.36–2.05)
Vietnam201530333918–6950.4120 (71–224)77 (40–128)54.7 (27.8–106.4)1.58 (1.01–1.98)
Vanuatu201144204025–6447.7130 (77–269)80 (38–139)69.4 (28.3–199.8)1.63 (1.02–2.1)
Samoa201314903718–6454.1125 (80–222)75 (44–132)90.3 (32.1–160)1.68 (1.22–1.97)
  1. SBP: systolic blood pressure; DBP: diastolic blood pressure.

Appendix 1—table 7
Predicted mean salt intake (g/day) by sex in each of the 54 national surveys included in the application of the model herein developed.
CountryYearSexMean salt intakeMean salt intake lower 95% confidence intervalMean salt intake upper 95% confidence interval
Algeria2017Men9.269.229.3
Algeria2017Women7.547.57.58
Algeria2017Total8.438.398.47
American Samoa2004Men10.910.810.99
American Samoa2004Women9.038.969.11
American Samoa2004Total9.979.9310.01
Bahamas2012Men10.099.8310.35
Bahamas2012Women8.117.818.4
Bahamas2012Total9.18.99.29
Barbados2007Men9.429.259.6
Barbados2007Women7.857.548.17
Barbados2007Total8.678.458.89
Benin2015Men8.968.99.03
Benin2015Women7.016.897.12
Benin2015Total7.987.818.15
Botswana2014Men8.748.688.79
Botswana2014Women7.27.147.26
Botswana2014Total87.948.06
British Virgin Islands2009Men9.739.669.81
British Virgin Islands2009Women7.857.827.88
British Virgin Islands2009Total8.878.828.92
Cabo Verde2007Men8.988.939.03
Cabo Verde2007Women7.137.037.23
Cabo Verde2007Total8.067.978.16
Cambodia2010Men8.838.88.86
Cambodia2010Women6.836.816.86
Cambodia2010Total7.827.787.86
Cayman Islands2012Men9.739.699.77
Cayman Islands2012Women7.927.618.23
Cayman Islands2012Total8.848.758.92
Comoros2011Men9.069.029.1
Comoros2011Women7.437.387.47
Comoros2011Total8.298.248.33
Cook Islands2015Men10.8710.7311.01
Cook Islands2015Women8.748.638.86
Cook Islands2015Total9.739.599.88
Ecuador2018Men9.69.559.65
Ecuador2018Women7.657.67.69
Ecuador2018Total8.618.558.68
Eritrea2010Men8.328.278.37
Eritrea2010Women6.486.436.52
Eritrea2010Total6.796.756.84
Eswatini2014Men9.119.029.2
Eswatini2014Women7.627.567.68
Eswatini2014Total8.338.278.39
Ethiopia2015Men8.528.498.54
Ethiopia2015Women6.626.596.65
Ethiopia2015Total7.687.657.72
Fiji2011Men9.539.449.62
Fiji2011Women7.847.767.91
Fiji2011Total8.78.68.8
French Polynesia2010Men10.11010.2
French Polynesia2010Women87.98.1
French Polynesia2010Total9.068.989.15
Gambia2010Men9.058.949.17
Gambia2010Women7.177.17.25
Gambia2010Total8.128.038.22
Grenada2011Men9.219.129.31
Grenada2011Women7.747.647.84
Grenada2011Total8.498.48.58
Guyana2016Men9.269.169.35
Guyana2016Women7.677.67.74
Guyana2016Total8.58.438.56
Iraq2015Men9.669.589.75
Iraq2015Women7.947.888.01
Iraq2015Total8.878.88.93
Kenya2015Men8.828.738.9
Kenya2015Women7.137.047.21
Kenya2015Total7.987.898.07
Kiribati2016Men9.929.7410.09
Kiribati2016Women8.278.148.39
Kiribati2016Total8.978.869.09
Kuwait2014Men10.069.9910.12
Kuwait2014Women7.957.918
Kuwait2014Total8.998.949.05
Kyrgyzstan2013Men9.459.349.55
Kyrgyzstan2013Women7.627.567.67
Kyrgyzstan2013Total8.578.58.63
Lao People’s Democratic Republic2013Men9.038.989.08
Lao People’s Democratic Republic2013Women7.077.027.12
Lao People’s Democratic Republic2013Total7.97.837.97
Lesotho2012Men9.088.999.17
Lesotho2012Women7.77.67.79
Lesotho2012Total8.388.318.46
Liberia2011Men9.439.329.55
Liberia2011Women7.587.487.69
Liberia2011Total8.528.418.63
Libya2009Men9.519.449.59
Libya2009Women7.817.737.89
Libya2009Total8.698.638.75
Marshall Islands2018Men9.929.869.99
Marshall Islands2018Women8.168.18.21
Marshall Islands2018Total9.018.969.07
Mozambique2005Men8.728.628.83
Mozambique2005Women6.926.847
Mozambique2005Total7.757.637.87
Myanmar2014Men8.818.748.88
Myanmar2014Women7.076.977.17
Myanmar2014Total7.957.888.02
Namibia2005Men8.748.598.89
Namibia2005Women7.246.937.56
Namibia2005Total7.867.638.09
Nauru2016Men10.9810.8711.1
Nauru2016Women8.798.638.94
Nauru2016Total9.899.7410.03
Niger2007Men8.568.528.6
Niger2007Women6.676.636.71
Niger2007Total7.697.657.74
Niue2012Men10.3910.2810.51
Niue2012Women8.398.278.51
Niue2012Total9.49.299.5
Palau2013Men10.1810.0710.28
Palau2013Women7.997.98.08
Palau2013Total9.159.059.25
Qatar2012Men10.029.9310.11
Qatar2012Women7.947.858.04
Qatar2012Total98.99.09
Republic of Moldova2013Men9.519.459.57
Republic of Moldova2013Women7.467.417.52
Republic of Moldova2013Total8.548.488.6
Rwanda2013Men8.878.858.9
Rwanda2013Women7.026.997.05
Rwanda2013Total7.927.897.96
Samoa2013Men10.2310.0910.37
Samoa2013Women8.618.518.71
Samoa2013Total9.499.419.57
Sao Tome and Principe2008Men9.058.979.12
Sao Tome and Principe2008Women7.217.17.32
Sao Tome and Principe2008Total8.17.998.2
Sierra Leone2009Men8.858.768.94
Sierra Leone2009Women76.97.11
Sierra Leone2009Total7.937.828.04
Sri Lanka2015Men8.918.868.95
Sri Lanka2015Women7.077.037.1
Sri Lanka2015Total8.017.978.06
Tajikistan2017Men9.419.349.49
Tajikistan2017Women7.357.37.41
Tajikistan2017Total8.468.388.55
Timor-Leste2014Men8.918.799.02
Timor-Leste2014Women6.86.756.86
Timor-Leste2014Total8.157.868.43
Togo2011Men8.828.798.86
Togo2011Women7.016.967.06
Togo2011Total7.97.857.96
Tuvalu2015Men10.3710.2410.5
Tuvalu2015Women8.728.628.83
Tuvalu2015Total9.639.539.73
Uganda2014Men8.88.768.84
Uganda2014Women7.026.967.07
Uganda2014Total7.927.867.98
United Republic of Tanzania2012Men8.718.638.79
United Republic of Tanzania2012Women7.137.057.21
United Republic of Tanzania2012Total7.937.887.98
Uruguay2014Men9.559.489.63
Uruguay2014Women7.477.417.52
Uruguay2014Total8.468.398.53
Vanuatu2011Men9.389.339.43
Vanuatu2011Women7.457.47.5
Vanuatu2011Total8.378.318.43
Vietnam2015Men8.918.868.95
Vietnam2015Women6.846.816.88
Vietnam2015Total7.887.837.94
Appendix 1—table 8
Comparison between mean salt intake (g/day) predictions and global estimates across national surveys included in the application of our machine learning model.
CountryYear (machine learning predictions)Machine learning predicted mean salt intake and 95% confidence intervalYear (global estimates)Estimated mean salt intake and 95% confidence intervalRatio between machine learning predicted and global estimates
Algeria20178.4 (8.4–8.5)201010.7 (9–12.5)0.8
Bahamas20129.1 (8.9–9.3)20107.5 (6.2–8.8)1.2
Barbados20078.7 (8.4–8.9)20108.6 (7.8–9.4)1
Benin20158 (7.8–8.2)20107.1 (6.2–8.1)1.1
Botswana20148 (7.9–8.1)20106.3 (5.4–7.4)1.3
Cabo Verde20078.1 (8–8.2)20108.1 (6.8–9.7)1
Cambodia20107.8 (7.8–7.9)201011 (9.3–12.9)0.7
Comoros20118.3 (8.2–8.3)20104.2 (3.5–5)2
Ecuador20188.6 (8.6–8.7)20107.6 (6.4–8.9)1.1
Eritrea20106.8 (6.8–6.8)20105.9 (5–7)1.2
Ethiopia20157.7 (7.7–7.7)20105.7 (4.9–6.7)1.4
Fiji20118.7 (8.6–8.8)20107.2 (6–8.5)1.2
Gambia20108.1 (8–8.2)20107.7 (6.5–8.9)1.1
Grenada20118.5 (8.4–8.6)20106.5 (5.5–7.7)1.3
Guyana20168.5 (8.4–8.6)20106.1 (5.1–7.3)1.4
Iraq20158.9 (8.8–8.9)20109.4 (8–11.2)0.9
Kenya20158 (7.9–8.1)20103.7 (3.4–4)2.2
Kiribati20169 (8.9–9.1)20105.6 (4.6–6.7)1.6
Kuwait20149 (8.9–9.1)20109.7 (8.7–10.8)0.9
Kyrgyzstan20138.6 (8.5–8.6)201013.4 (11.4–15.8)0.6
Lao People’s Democratic Republic20137.9 (7.8–8)201011.1 (9.4–13.2)0.7
Lesotho20128.4 (8.3–8.5)20106.6 (5.5–7.8)1.3
Liberia20118.5 (8.4–8.6)20106.7 (5.6–7.9)1.3
Libya20098.7 (8.6–8.8)201010.6 (8.9–12.5)0.8
Marshall Islands20189 (9–9.1)20106.4 (5.4–7.5)1.4
Mozambique20057.8 (7.6–7.9)20105.6 (4.7–6.6)1.4
Myanmar20148 (7.9–8)201011.2 (9.4–13.2)0.7
Namibia20057.9 (7.6–8.1)20106.6 (5.6–7.7)1.2
Niger20077.7 (7.7–7.7)20107.3 (6.2–8.6)1.1
Qatar20129 (8.9–9.1)201010.5 (8.3–12.9)0.9
Republic of Moldova20138.5 (8.5–8.6)20109.9 (8.3–11.6)0.9
Rwanda20137.9 (7.9–8)20104 (3.3–4.9)2
Samoa20139.5 (9.4–9.6)20105.2 (4.6–5.8)1.8
Sao Tome and Principe20088.1 (8–8.2)20105.9 (4.9–6.9)1.4
Sierra Leone20097.9 (7.8–8)20106.3 (5.3–7.3)1.3
Sri Lanka20158 (8–8.1)20109.7 (8.2–11.3)0.8
Tajikistan20178.5 (8.4–8.6)201013.5 (11.6–15.7)0.6
Timor-Leste20148.2 (7.9–8.4)201011.2 (9.3–13.3)0.7
Uganda20147.9 (7.9–8)20105.3 (4.4–6.3)1.5
United Republic of Tanzania20127.9 (7.9–8)20106.9 (6.1–7.7)1.1
Uruguay20148.5 (8.4–8.5)20106.8 (5.8–8)1.2
Vanuatu20118.4 (8.3–8.4)20105.6 (4.8–6.6)1.5
Vietnam20157.9 (7.8–7.9)201011.5 (9.5–13.7)0.7
  1. There are 43 countries in this table; that is, countries included in our analysis that were not available in the previous global work were not included in this table (Powles et al., 2013).

Appendix 1—table 9
Countries included in the analysis by income group according to the World Bank classification.
AnalysisWorld regionCountryYearIncome group
Model applicationAfricaAlgeria2017Upper-middle
Model applicationWestern PacificAmerican Samoa2004Upper-middle
Model applicationAmericasBahamas2012High
Model applicationAmericasBarbados2007High
Model applicationAfricaBenin2015Lower
Model applicationAfricaBotswana2014Upper-middle
Model applicationAmericasBritish Virgin Islands2009No data
Model applicationAfricaCabo Verde2007Lower-middle
Model applicationWestern PacificCambodia2010Lower
Model applicationAmericasCayman Islands2012High
Model applicationAfricaComoros2011Lower
Model applicationWestern PacificCook Islands2015No data
Model applicationAmericasEcuador2018Upper-middle
Model applicationAfricaEritrea2010Lower
Model applicationAfricaEswatini2014Lower-middle
Model applicationAfricaEthiopia2015Lower
Model applicationWestern PacificFiji2011Lower-middle
Model applicationWestern PacificFrench Polynesia2010High
Model applicationAfricaGambia2010Lower
Model applicationAmericasGrenada2011Upper-middle
Model applicationAmericasGuyana2016Upper-middle
Model applicationEastern MediterraneanIraq2015Upper-middle
Model applicationAfricaKenya2015Lower-middle
Model applicationWestern PacificKiribati2016Lower-middle
Model applicationEastern MediterraneanKuwait2014High
Model applicationEastern MediterraneanKyrgyzstan2013Lower-middle
Model applicationWestern PacificLao People’s Democratic Republic2013Lower-middle
Model applicationAfricaLesotho2012Lower-middle
Model applicationAfricaLiberia2011Lower
Model applicationEastern MediterraneanLibya2009Upper-middle
Model applicationWestern PacificMarshall Islands2018Upper-middle
Model applicationAfricaMozambique2005Lower
Model applicationSoutheast AsiaMyanmar2014Lower-middle
Model applicationAfricaNamibia2005Lower-middle
Model applicationWestern PacificNauru2016Upper-middle
Model applicationAfricaNiger2007Lower
Model applicationWestern PacificNiue2012No data
Model applicationWestern PacificPalau2013Upper-middle
Model applicationEastern MediterraneanQatar2012High
Model applicationEuropeRepublic of Moldova2013Lower-middle
Model applicationAfricaRwanda2013Lower
Model applicationWestern PacificSamoa2013Lower-middle
Model applicationAfricaSao Tome and Principe2008Lower-middle
Model applicationAfricaSierra Leone2009Lower
Model applicationSoutheast AsiaSri Lanka2015Lower-middle
Model applicationEuropeTajikistan2017Lower
Model applicationSoutheast AsiaTimor-Leste2014Lower-middle
Model applicationAfricaTogo2011Lower
Model applicationWestern PacificTuvalu2015Upper-middle
Model applicationAfricaUganda2014Lower
Model applicationAfricaUnited Republic of Tanzania2012Lower
Model applicationAmericasUruguay2014High
Model applicationWestern PacificVanuatu2011Lower-middle
Model applicationWestern PacificVietnam2015Lower-middle
Model derivationEuropeArmenia2016Lower-middle
Model derivationEuropeAzerbaijan2017Upper-middle
Model derivationSoutheast AsiaBangladesh2018Lower-middle
Model derivationEuropeBelarus2017Upper-middle
Model derivationSoutheast AsiaBhutan2014Lower-middle
Model derivationSoutheast AsiaBhutan2019Lower-middle
Model derivationWestern PacificBrunei Darussalam2016High
Model derivationAmericasChile2017High
Model derivationEastern MediterraneanJordan2019Upper-middle
Model derivationEastern MediterraneanLebanon2017Upper-middle
Model derivationAfricaMalawi2017Lower
Model derivationWestern PacificMongolia2013Lower-middle
Model derivationWestern PacificMongolia2019Lower-middle
Model derivationEastern MediterraneanMorocco2017Lower-middle
Model derivationSoutheast AsiaNepal2019Lower-middle
Model derivationWestern PacificSolomon Islands2015Lower-middle
Model derivationEastern MediterraneanSudan2016Lower-middle
Model derivationWestern PacificTokelau2014No data
Model derivationWestern PacificTonga2017Upper-middle
Model derivationEuropeTurkmenistan2018Upper-middle
Model derivationAfricaZambia2017Lower-middle
Appendix 2—table 1
Performance of each algorithm and processing method.
AlgorithmProcessingR2MAERMSE
LiRPolynomial (g = 2)0.4471.11381.4451
HuRStandardized0.4471.11321.4442
RiRPolynomial (g = 2)0.4461.11471.4459
MLPMin-max0.4511.11011.4395
SVRMin-max0.4461.09881.4459
KNNStandardized0.4211.14261.4779
RFPolynomial (g = 2)0.4171.14741.4835
GBMMin-max0.4471.11471.4447
XGBMin-max0.4311.12931.4646
Customized NNBox-Cox0.4611.09531.4156
  1. MAE: mean absolute error; RMSE: root mean square error; LiR: linear regression; HuR: Hubber regressor; RiR: ridge regressor; MLP: multilayer perceptron; SVR: support vector regressor; KNN: k-nearest neighbors; GBM: gradient boost machine; XGB: extreme gradient boosting; NN: neural network; RF: random forest.

Appendix 2—table 2
Mean difference between observed and predicted salt intake by sex across all machine learning algorithms.
Machine learning algorithmMean difference between observed and predicted mean salt intakeSex
CNN_boxcox–0.0109Both sexes
CNN_standardize–0.0075Both sexes
GBR_boxcox0.1373Both sexes
GBR_minmax0.1198Both sexes
GBR_orig–0.0252Both sexes
GBR_standardized0.1231Both sexes
HuR_boxcox0.0389Both sexes
HuR_standardized–0.0019Both sexes
KNN_boxcox0.0144Both sexes
KNN_standardized–0.0172Both sexes
LiR_poly–0.0292Both sexes
MLP_boxcox–0.0069Both sexes
MLP_minmax–0.019Both sexes
MLP_standardized–0.0174Both sexes
RF_poly–0.0479Both sexes
RiR_poly–0.0304Both sexes
SVR_minmax0.1137Both sexes
XGB_boxcox0.0389Both sexes
XGB_orig–0.0312Both sexes
XGB_standardized–0.0329Both sexes
CNN_boxcox0.088Men
CNN_standardize0.0699Men
GBR_boxcox0.1591Men
GBR_minmax0.1381Men
GBR_orig0.0197Men
GBR_standardized0.1444Men
HuR_boxcox0.0265Men
HuR_standardized–0.0119Men
KNN_boxcox0.0612Men
KNN_standardized0.0179Men
LiR_poly0.0069Men
MLP_boxcox0.0512Men
MLP_minmax–0.0104Men
MLP_standardized–0.0249Men
RF_poly–0.0129Men
RiR_poly0.0063Men
SVR_minmax0.1265Men
XGB_boxcox0.0265Men
XGB_orig0.0147Men
XGB_standardized0.0069Men
CNN_boxcox–0.1097Women
CNN_standardized–0.085Women
GBR_boxcox0.1155Women
GBR_minmax0.1015Women
GBR_orig–0.07Women
GBR_standardized0.1018Women
HuR_boxcox0.0514Women
HuR_standardized0.0082Women
KNN_boxcox–0.0324Women
KNN_standardized–0.0524Women
LiR_poly–0.0653Women
MLP_boxcox–0.0649Women
MLP_minmax–0.0276Women
MLP_standardized–0.0098Women
RF_poly–0.0828Women
RiR_poly–0.0671Women
SVR_minmax0.101Women
XGB_boxcox0.0514Women
XGB_orig–0.0771Women
XGB_standardized–0.0727Women
Author response table 1
Income
TotalLowLower-middleUpper-middleHighNo group
Model developmentOriginal1719511
Revision1919621
Difference+2+1+1
Model applicationOriginal4913161163
Revision5415171273
Difference+5+2+1+1+1
Author response table 2
Teufel F, et al. Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults. Lancet. 2021;398(10296):238–48.
Flood D, et al., The state of diabetes treatment coverage in 55 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 680 102 adults. The L,ancet Healthy Longevity. 2021;2(6):e340–51.
Peiris D, et al., Cardiovascular disease risk profile and management practices in 45 lowincome and middle-income countries: A cross-sectional study of nationally representative individual-level survey data. PLoS Med. 2021;18(3):e1003485.
Davies JI, et al., Association between country preparedness indicators and quality clinical care for cardiovascular disease risk factors in 44 lower- and middle-income countries: A multicountry analysis of survey data. PLoS Med. 2020;17(11):e1003268.
Seiglie JA, et al., Diabetes Prevalence and Its Relationship With Education, Wealth, and BMI in 29 Low- and Middle-Income Countries. Diabetes Care. 2020;43(4):767–75.
Geldsetzer P, et al., The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-level data from 1·1 million adults. Lancet. 2019;394(10199):652–62.
Manne-Goehler J, et al., Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys. PLoS Med. 2019;16(3):e1002751.

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wilmer Cristobal Guzman-Vilca
  2. Manuel Castillo-Cara
  3. Rodrigo M Carrillo-Larco
(2022)
Development, validation, and application of a machine learning model to estimate salt consumption in 54 countries
eLife 11:e72930.
https://doi.org/10.7554/eLife.72930