Parent-of-origin effects propagate through networks to shape metabolic traits

  1. Juan F Macias-Velasco
  2. Celine L St. Pierre
  3. Jessica P Wayhart
  4. Li Yin
  5. Larry Spears
  6. Mario A Miranda
  7. Caryn Carson
  8. Katsuhiko Funai
  9. James Cheverud
  10. Clay F Semenkovich
  11. Heather A Lawson  Is a corresponding author
  1. Washington University in Saint Louis, United States
  2. University of Utah, United States
  3. Loyola University Chicago, United States

Abstract

Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of 3 imprinted and 6 non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on 2 genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.

Data availability

Sequencing data are available through the NCBI-SRA under accession code PRJNA753198

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Juan F Macias-Velasco

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2827-4647
  2. Celine L St. Pierre

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5465-6601
  3. Jessica P Wayhart

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Yin

    Department of Medicine, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Larry Spears

    Department of Medicine, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mario A Miranda

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Caryn Carson

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katsuhiko Funai

    Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. James Cheverud

    Department of Biology, Loyola University Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Clay F Semenkovich

    Department of Medicine, Washington University in Saint Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1163-1871
  11. Heather A Lawson

    Department of Genetics, Washington University in Saint Louis, Saint Louis, United States
    For correspondence
    lawson@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3550-5485

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse colony was maintained at the Washington University School of Medicine and all experiments were approved by the Institutional Animal Care and Use Committee in accordance with the National Institutes of Health guidelines for the care and use of laboratory animals. Protocol #20-0384

Copyright

© 2022, Macias-Velasco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,456
    views
  • 220
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan F Macias-Velasco
  2. Celine L St. Pierre
  3. Jessica P Wayhart
  4. Li Yin
  5. Larry Spears
  6. Mario A Miranda
  7. Caryn Carson
  8. Katsuhiko Funai
  9. James Cheverud
  10. Clay F Semenkovich
  11. Heather A Lawson
(2022)
Parent-of-origin effects propagate through networks to shape metabolic traits
eLife 11:e72989.
https://doi.org/10.7554/eLife.72989

Share this article

https://doi.org/10.7554/eLife.72989

Further reading

    1. Evolutionary Biology
    Matthew Osmond, Graham Coop
    Research Article Updated

    Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.

    1. Evolutionary Biology
    Dario Galanti, Jun Hee Jung ... Oliver Bossdorf
    Research Article

    Understanding the genomic basis of natural variation in plant pest resistance is an important goal in plant science, but it usually requires large and labor-intensive phenotyping experiments. Here, we explored the possibility that non-target reads from plant DNA sequencing can serve as phenotyping proxies for addressing such questions. We used data from a whole-genome and -epigenome sequencing study of 207 natural lines of field pennycress (Thlaspi arvense) that were grown in a common environment and spontaneously colonized by aphids, mildew, and other microbes. We found that the numbers of non-target reads assigned to the pest species differed between populations, had significant SNP-based heritability, and were associated with climate of origin and baseline glucosinolate contents. Specifically, pennycress lines from cold and thermally fluctuating habitats, presumably less favorable to aphids, showed higher aphid DNA load, i.e., decreased aphid resistance. Genome-wide association analyses identified genetic variants at known defense genes but also novel genomic regions associated with variation in aphid and mildew DNA load. Moreover, we found several differentially methylated regions associated with pathogen loads, in particular differential methylation at transposons and hypomethylation in the promoter of a gene involved in stomatal closure, likely induced by pathogens. Our study provides first insights into the defense mechanisms of Thlaspi arvense, a rising crop and model species, and demonstrates that non-target whole-genome sequencing reads, usually discarded, can be leveraged to estimate intensities of plant biotic interactions. With rapidly increasing numbers of large sequencing datasets worldwide, this approach should have broad application in fundamental and applied research.