Dual signaling via interferon and DNA damage response elicits entrapment by giant PML nuclear bodies

  1. Myriam Scherer
  2. Clarissa Read
  3. Gregor Neusser
  4. Christine Kranz
  5. Anna K Kuderna
  6. Regina Müller
  7. Florian Full
  8. Sonja Woerz
  9. Anna Reichel
  10. Eva-Maria Schilling
  11. Paul Walther
  12. Thomas Stamminger  Is a corresponding author
  1. Ulm University Medical Center, Germany
  2. ULM University, Germany
  3. Friedrich Alexander Universität Erlangen-Nürnberg, Germany

Abstract

PML nuclear bodies (PML-NBs) are dynamic interchromosomal macromolecular complexes implicated in epigenetic regulation as well as antiviral defense. During herpesvirus infection, PML-NBs induce epigenetic silencing of viral genomes, however, this defense is antagonized by viral regulatory proteins such as IE1 of human cytomegalovirus (HCMV). Here, we show that PML-NBs undergo a drastic rearrangement into highly enlarged PML cages upon infection with IE1-deficient HCMV. Importantly, our results demonstrate that dual signaling by interferon and DNA damage response is required to elicit giant PML-NBs. DNA labeling revealed that invading HCMV genomes are entrapped inside PML-NBs and remain stably associated with PML cages in a transcriptionally repressed state. Intriguingly, by correlative light and transmission electron microscopy (EM), we observed that PML cages also entrap newly assembled viral capsids demonstrating a second defense layer in cells with incomplete first line response. Further characterization by 3D EM showed that hundreds of viral capsids are tightly packed into several layers of fibrous PML. Overall, our data indicate that giant PML-NBs arise via combined interferon and DNA damage signaling which triggers entrapment of both nucleic acids and proteinaceous components. This represents a multilayered defense strategy to act in a cytoprotective manner and to combat viral infections.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 3, 4, 5, 6 and Figure 5-figure supplement 2

Article and author information

Author details

  1. Myriam Scherer

    Institute of Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Clarissa Read

    Central Facility for Electron Microscopy, ULM University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregor Neusser

    Institute of Analytical and Bioanalytical Chemistry, ULM University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christine Kranz

    Institute of Analytical and Bioanalytical Chemistry, ULM University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna K Kuderna

    Institute of Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Regina Müller

    Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Florian Full

    Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Sonja Woerz

    Institute of Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Anna Reichel

    Institute of Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Eva-Maria Schilling

    Institute of Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Walther

    Central Facility for Electron Microscopy, ULM University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Thomas Stamminger

    Institute of Virology, Ulm University Medical Center, Ulm, Germany
    For correspondence
    thomas.stamminger@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9878-3119

Funding

Deutsche Forschungsgemeinschaft (STA357/7-1)

  • Thomas Stamminger

Deutsche Forschungsgemeinschaft (STA357/8-1)

  • Thomas Stamminger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Scherer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,536
    views
  • 260
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myriam Scherer
  2. Clarissa Read
  3. Gregor Neusser
  4. Christine Kranz
  5. Anna K Kuderna
  6. Regina Müller
  7. Florian Full
  8. Sonja Woerz
  9. Anna Reichel
  10. Eva-Maria Schilling
  11. Paul Walther
  12. Thomas Stamminger
(2022)
Dual signaling via interferon and DNA damage response elicits entrapment by giant PML nuclear bodies
eLife 11:e73006.
https://doi.org/10.7554/eLife.73006

Share this article

https://doi.org/10.7554/eLife.73006

Further reading

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.