Structural organization and dynamics of FCHo2 docking on membranes

  1. Fatima El Alaoui
  2. Ignacio Casuso
  3. David Sanchez-Fuentes
  4. Charlotte Arpin-Andre
  5. Raissa Rathar
  6. Volker Baecker
  7. Anna Castro
  8. Thierry Lorca
  9. Julien Viaud
  10. Stéphane Vassilopoulos
  11. Adrien Carretero-Genevrier
  12. Laura Picas  Is a corresponding author
  1. CNRS UMR 9004, Université de Montpellier, France
  2. U1067 INSERM, Aix-Marseille Université, France
  3. CNRS UMR 5214, Université de Montpellier, France
  4. CNRS, INSERM, University of Montpellier, France
  5. CNRS UMR Université de Montpellier, France
  6. UMR1297, University of Toulouse, France
  7. Sorbonne Université, INSERM, France

Abstract

Clathrin-mediated endocytosis (CME) is a central trafficking pathway in eukaryotic cells regulated by phosphoinositides. The plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in driving CME initiation. The F-BAR domain only protein 1 and 2 complex (FCHo1/2) is among the early proteins that reach the plasma membrane, but the exact mechanisms triggering its recruitment remain elusive. Here, we show the molecular dynamics of FCHo2 self-assembly on membranes by combining minimal reconstituted in vitro and cellular systems. Our results indicate that PI(4,5)P2 domains assist FCHo2 docking at specific membrane regions, where it self-assembles into ring-like shape protein patches. We show that the binding of FCHo2 on cellular membranes promotes PI(4,5)P2 clustering at the boundary of cargo receptors and that this accumulation enhances clathrin assembly. Thus, our results provide a mechanistic framework that could explain the recruitment of early PI(4,5)P2-interacting proteins at endocytic sites.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. Datasets are available at Dryad, doi:10.5061/dryad.n8pk0p2wp

The following data sets were generated

Article and author information

Author details

  1. Fatima El Alaoui

    Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3298-4078
  2. Ignacio Casuso

    U1067 INSERM, Aix-Marseille Université, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. David Sanchez-Fuentes

    Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Charlotte Arpin-Andre

    Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Raissa Rathar

    Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8766-2186
  6. Volker Baecker

    Montpellier Ressources Imagerie, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9129-6403
  7. Anna Castro

    Centre de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Thierry Lorca

    Centre de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Julien Viaud

    Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, University of Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4406-5642
  10. Stéphane Vassilopoulos

    Sorbonne Université, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0172-330X
  11. Adrien Carretero-Genevrier

    Institut d'Électronique et des Systèmes (IES), CNRS UMR 5214, Université de Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0488-9452
  12. Laura Picas

    Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, Montpellier, France
    For correspondence
    laura.picas@irim.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5619-5228

Funding

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • Volker Baecker

ATIP-Avenir (AO-2016)

  • Laura Picas

Agence Nationale de la Recherche (ANR-18-CE13-0015-02)

  • Laura Picas

European Research Council (No.803004)

  • Adrien Carretero-Genevrier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, El Alaoui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,009
    views
  • 321
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fatima El Alaoui
  2. Ignacio Casuso
  3. David Sanchez-Fuentes
  4. Charlotte Arpin-Andre
  5. Raissa Rathar
  6. Volker Baecker
  7. Anna Castro
  8. Thierry Lorca
  9. Julien Viaud
  10. Stéphane Vassilopoulos
  11. Adrien Carretero-Genevrier
  12. Laura Picas
(2022)
Structural organization and dynamics of FCHo2 docking on membranes
eLife 11:e73156.
https://doi.org/10.7554/eLife.73156

Share this article

https://doi.org/10.7554/eLife.73156

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.