Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products

  1. Anna Isabell Weaver
  2. Laura Alvarez
  3. Kelly M Rosch
  4. Asraa Ahmed
  5. Garrett Sean Wang
  6. Michael S vanNieuwenhze
  7. Felipe Cava  Is a corresponding author
  8. Tobias Dörr  Is a corresponding author
  1. Cornell University, United States
  2. Umeå University, Sweden
  3. Indiana University, United States

Abstract

The peptidoglycan cell wall is a predominant structure of bacteria, determining cell shape and supporting survival in diverse conditions. Peptidoglycan is dynamic and requires regulated synthesis of new material, remodeling, and turnover - or autolysis - of old material. Despite exploitation of peptidoglycan synthesis as an antibiotic target, we lack a fundamental understanding of how peptidoglycan synthesis and autolysis intersect to maintain the cell wall. Here, we uncover a critical physiological role for a widely misunderstood class of autolytic enzymes, lytic transglycosylases (LTGs). We demonstrate that LTG activity is essential to survival by contributing to periplasmic processes upstream and independent of peptidoglycan recycling. Defects accumulate in Vibrio cholerae LTG mutants due to generally inadequate LTG activity, rather than absence of specific enzymes, and essential LTG activities are likely independent of protein-protein interactions, as heterologous expression of a non-native LTG rescues growth of a conditionally LTG-null mutant. Lastly, we demonstrate that soluble, uncrosslinked, endopeptidase-dependent peptidoglycan chains, also detected in the wild-type, are enriched in LTG mutants, and that LTG mutants are hypersusceptible to the production of diverse periplasmic polymers. Collectively, our results suggest that LTGs prevent toxic crowding of the periplasm with synthesis-derived peptidoglycan polymers and contrary to prevailing models, that this autolytic function can be temporally separate from peptidoglycan synthesis.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1 and 3.

Article and author information

Author details

  1. Anna Isabell Weaver

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0556-0336
  2. Laura Alvarez

    Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2429-7542
  3. Kelly M Rosch

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6416-1730
  4. Asraa Ahmed

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Garrett Sean Wang

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael S vanNieuwenhze

    Department of Molecular and Cellular Biochemistry, Indiana University, Indiana, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Felipe Cava

    The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
    For correspondence
    felipe.cava@umu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5995-718X
  8. Tobias Dörr

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    For correspondence
    tdoerr@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3283-9161

Funding

National Institutes of Health (R01-GM130971)

  • Tobias Dörr

Molecular Infection Medicine Sweden (MIMS2012)

  • Felipe Cava

Knut and Alice Wallenberg Foundation (KAW2012.0184)

  • Felipe Cava

Swedish Research Council (VR2018-02823)

  • Felipe Cava

Kempe Foundation (SMK2062)

  • Felipe Cava

National Institutes of Health (R01-GM113172)

  • Michael S vanNieuwenhze

National Institutes of Health (R35-GM136365)

  • Michael S vanNieuwenhze

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Weaver et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,204
    views
  • 341
    downloads
  • 234
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Isabell Weaver
  2. Laura Alvarez
  3. Kelly M Rosch
  4. Asraa Ahmed
  5. Garrett Sean Wang
  6. Michael S vanNieuwenhze
  7. Felipe Cava
  8. Tobias Dörr
(2022)
Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products
eLife 11:e73178.
https://doi.org/10.7554/eLife.73178

Share this article

https://doi.org/10.7554/eLife.73178

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.

    1. Microbiology and Infectious Disease
    Linkang Wang, Haiyan Wang ... Ping Qian
    Research Article

    Bacillus velezensis is a species of Bacillus that has been widely investigated because of its broad-spectrum antimicrobial activity. However, most studies on B. velezensis have focused on the biocontrol of plant diseases, with few reports on antagonizing Salmonella Typhimurium infections. In this investigation, it was discovered that B. velezensis HBXN2020, which was isolated from healthy black pigs, possessed strong anti-stress and broad-spectrum antibacterial activity. Importantly, B. velezensis HBXN2020 did not cause any adverse side effects in mice when administered at various doses (1×107, 1×108, and 1×109 CFU) for 14 days. Supplementing B. velezensis HBXN2020 spores, either as a curative or preventive measure, dramatically reduced the levels of S. Typhimurium ATCC14028 in the mice’s feces, ileum, cecum, and colon, as well as the disease activity index (DAI), in a model of infection caused by this pathogen in mice. Additionally, supplementing B. velezensis HBXN2020 spores significantly regulated cytokine levels (Tnfa, Il1b, Il6, and Il10) and maintained the expression of tight junction proteins and mucin protein. Most importantly, adding B. velezensis HBXN2020 spores to the colonic microbiota improved its stability and increased the amount of beneficial bacteria (Lactobacillus and Akkermansia). All together, B. velezensis HBXN2020 can improve intestinal microbiota stability and barrier integrity and reduce inflammation to help treat infection by S. Typhimurium.