Radiocarbon and genomic evidence for the survival of Equus Sussemionus until the late Holocene

  1. Dawei Cai  Is a corresponding author
  2. Siqi Zhu
  3. Mian Gong
  4. Naifan Zhang
  5. Jia Wen
  6. Qiyao Liang
  7. Weilu Sun
  8. Xinyue Shao
  9. Yaqi Guo
  10. Yudong Cai
  11. Zhuqing Zheng
  12. Wei Zhang
  13. Songmei Hu
  14. Xiaoyang Wang
  15. He Tian
  16. Youqian Li
  17. Wei Liu
  18. Miaomiao Yang
  19. Jian Yang
  20. Duo Wu
  21. Ludovic Orlando  Is a corresponding author
  22. Yu Jiang  Is a corresponding author
  1. Jilin University, China
  2. Northwest A&F University, China
  3. Heilongjiang Provincial Institute of Cultural Relics and Archaeology, China
  4. Shaanxi Provincial Institute of Archaeology, China
  5. Ningxia Institute of Cultural Relics and Archaeology, China
  6. Lanzhou University, China
  7. Université Paul Sabatier, CNRS UMR 5288, France

Abstract

The exceptionally-rich fossil record available for the equid family has provided textbook examples of macroevolutionary changes. Horses, asses and zebras represent three extant subgenera of Equus lineage, while the Sussemionus subgenus is another remarkable Equus lineage ranging from North America to Ethiopia in the Pleistocene. We sequenced 26 archaeological specimens from northern China in the Holocene that could be assigned morphologically and genetically to Equus ovodovi, a species representative of Sussemionus. We present the first high-quality complete genome of the Sussemionus lineage, which was sequenced to 13.4× depth-of-coverage. Radiocarbon dating demonstrates that this lineage survived until ~3,500 years ago, despite continued demographic collapse during the Last Glacial Maximum and the great human expansion in East Asia. We also confirmed the Equus phylogenetic tree, and found that Sussemionus diverged from the ancestor of non-caballine equids ~2.3-2.7 Million years ago and possibly remained affected by secondary gene flow post-divergence. We found that the small genetic diversity, rather than enhanced inbreeding, limited the species' chances of survival. Our work adds to the growing literature illustrating how ancient DNA can inform on extinction dynamics and the long-term resilience of species surviving in cryptic population pockets.

Data availability

Sequencing data have been deposited in the European Nucleotide Archive under the accession number PRJEB44527.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Dawei Cai

    Bioarchaeology Laboratory, Jilin University, Changchun, China
    For correspondence
    caidw@jlu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  2. Siqi Zhu

    Bioarchaeology Laboratory, Jilin University, Changchun, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6307-1189
  3. Mian Gong

    College of Animal Science and Technology, Northwest A&F University, Yangling, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1785-0621
  4. Naifan Zhang

    Bioarchaeology Laboratory, Jilin University, Changchuin, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jia Wen

    College of Animal Science and Technology, Northwest A&F University, Yangling, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Qiyao Liang

    Bioarchaeology Laboratory, Jilin University, Changchun, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Weilu Sun

    Bioarchaeology Laboratory, Jilin University, Changchun, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xinyue Shao

    Bioarchaeology Laboratory, Jilin University, Changchun, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yaqi Guo

    Bioarchaeology Laboratory, Jilin University, Changchun, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yudong Cai

    College of Animal Science and Technology, Northwest A&F University, Yangling, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Zhuqing Zheng

    College of Animal Science and Technology, Northwest A&F University, Yangling, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Wei Zhang

    Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Songmei Hu

    Shaanxi Provincial Institute of Archaeology, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Xiaoyang Wang

    Ningxia Institute of Cultural Relics and Archaeology, Yinchuan, China
    Competing interests
    The authors declare that no competing interests exist.
  15. He Tian

    Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Youqian Li

    Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Wei Liu

    Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Miaomiao Yang

    Shaanxi Provincial Institute of Archaeology, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Jian Yang

    Ningxia Institute of Cultural Relics and Archaeology, Yinchuan, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Duo Wu

    College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  21. Ludovic Orlando

    7Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, CNRS UMR 5288, Toulouse, France
    For correspondence
    ludovic.orlando@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
  22. Yu Jiang

    College of Animal Science and Technology, Northwest A&F University, Yangling, China
    For correspondence
    yu.jiang@nwafu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4821-3585

Funding

Major Program of National Fund of Philosophy and Social Science of China (17ZDA221)

  • Dawei Cai

H2020 European Research Council (681605)

  • Ludovic Orlando

National Natural Science Foundation of China (31822052)

  • Yu Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Cai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,796
    views
  • 438
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dawei Cai
  2. Siqi Zhu
  3. Mian Gong
  4. Naifan Zhang
  5. Jia Wen
  6. Qiyao Liang
  7. Weilu Sun
  8. Xinyue Shao
  9. Yaqi Guo
  10. Yudong Cai
  11. Zhuqing Zheng
  12. Wei Zhang
  13. Songmei Hu
  14. Xiaoyang Wang
  15. He Tian
  16. Youqian Li
  17. Wei Liu
  18. Miaomiao Yang
  19. Jian Yang
  20. Duo Wu
  21. Ludovic Orlando
  22. Yu Jiang
(2022)
Radiocarbon and genomic evidence for the survival of Equus Sussemionus until the late Holocene
eLife 11:e73346.
https://doi.org/10.7554/eLife.73346

Share this article

https://doi.org/10.7554/eLife.73346

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.