Abstract

Recent studies suggest a framework where white matter (WM) atrophy plays an important role in fronto-temporal dementia (FTD) pathophysiology. However, these studies often overlook the fact that WM tracts bridging different brain regions may have different vulnerabilities to the disease and the relative contribution of GM atrophy to this WM model, resulting in a less comprehensive understanding of the relationship between clinical symptoms and pathology. Using a common factor analysis to extract a semantic and an executive factor, we aimed to test the relative contribution of WM and GM of specific tracts in predicting cognition in the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI). We found that semantic symptoms were mainly dependent on short-range WM fiber disruption, while damage to long-range WM fibers was preferentially associated to executive dysfunction with the GM contribution to cognition being predominant for local processing. These results support the importance of the disruption of specific WM tracts to the core cognitive symptoms associated with FTD. As large-scale WM tracts, which are particularly vulnerable to vascular disease, were highly associated with executive dysfunction, our findings highlight the importance of controlling for risk factors associated with deep white matter disease, such as vascular risk factors, in patients with FTD in order not to potentiate underlying executive dysfunction.

Data availability

All data were obtained from the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) and are available through the LONI portal (http://adni.loni.usc.edu). FTLDNI is a multicentric longitudinal database, collecting MRIs, PET and CSF biomarkers in FTD patients and age-matched controls.

The following previously published data sets were used
    1. Howard Rosen
    (2010) FTLDNI
    http://4rtni-ftldni.ini.usc.edu/.

Article and author information

Author details

  1. Melissa Savard

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Tharick A Pascoal

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Stijn Servaes

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Thijs Dhollander

    Developmental Imaging, Murdoch Children's Research Institute, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3088-3636
  5. Yasser Iturria-Medina

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9345-0347
  6. Min Su Kang

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Paolo Vitali

    Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Joseph Therriault

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Sulantha Mathotaarachchi

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9391-4503
  10. Andrea Lessa Benedet

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Serge Gauthier

    Department of Psychiatry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Pedro Rosa-Neto

    Translational Neuroimaging Laboratory, McGill University, Montreal, Canada
    For correspondence
    pedro.rosa@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9116-1376

Funding

National Institutes of Health (R01 AG032306)

  • Pedro Rosa-Neto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All data were obtained from the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI), through the LONI portal (http://adni.loni.usc.edu). FTLDNI is a multicentric longitudinal database, collecting MRIs, PET and CSF biomarkers in FTD patients and age-matched controls. The investigators at NIFD/FTLDNI contributed to the design and implementation of FTLDNI and/or provided data, but did not participate in the analysis or writing of this report.

Copyright

© 2022, Savard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 736
    views
  • 107
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melissa Savard
  2. Tharick A Pascoal
  3. Stijn Servaes
  4. Thijs Dhollander
  5. Yasser Iturria-Medina
  6. Min Su Kang
  7. Paolo Vitali
  8. Joseph Therriault
  9. Sulantha Mathotaarachchi
  10. Andrea Lessa Benedet
  11. Serge Gauthier
  12. Pedro Rosa-Neto
(2022)
Impact of long- and short-range fiber depletion on the cognitive deficits of fronto-temporal dementia
eLife 11:e73510.
https://doi.org/10.7554/eLife.73510

Share this article

https://doi.org/10.7554/eLife.73510

Further reading

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

    1. Neuroscience
    Lian Hollander-Cohen, Omer Cohen ... Berta Levavi-Sivan
    Research Article

    Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view. Here, we reveal that the satiety hormone cholecystokinin (CCK) is the primary regulator of this axis in zebrafish. We found that FSH cells express a CCK receptor, and our findings demonstrate that mutating this receptor results in a severe hindrance to ovarian development. Additionally, it causes a complete shutdown of both gonadotropins secretion. Using in-vivo and ex-vivo calcium imaging of gonadotrophs, we show that GnRH predominantly activates LH cells, whereas FSH cells respond to CCK stimulation, designating CCK as the bona fide FSH secretagogue. These findings indicate that the control of gametogenesis in fish was placed under different neural circuits, that are gated by CCK.