Purinergic receptor P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, Schwann cell proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis

  1. Jennifer Patritti Cram
  2. Jianqiang Wu
  3. Robert A Coover
  4. Tilat A Rizvi
  5. Katherine E Chaney
  6. Ramya Ravindran
  7. Jose A Cancelas
  8. Robert J Spinner
  9. Nancy Ratner  Is a corresponding author
  1. University of Cincinnati, United States
  2. Cincinnati Children's Hospital Medical Center, United States
  3. High Point University, United States
  4. Mayo Clinic, United States

Abstract

Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2RY14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs and mouse SCPs. Mouse Nf1-/-SCP self-renewal was reduced by genetic or pharmacological inhibition of P2RY14. In a mouse model of NF1, genetic deletion of P2RY14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2RY14 signals via Gi to increase intracellular cAMP, implicating P2RY14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2RY14 inhibitor diminished NF1-/-SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identifyP2RY14 as a critical regulator of SCP self-renewal, SC proliferation and neurofibroma initiation.

Data availability

The data sets and original figures generated during this study will be available at Synapse Project (https://www.synapse.org/).

The following data sets were generated

Article and author information

Author details

  1. Jennifer Patritti Cram

    Neuroscience Graduate Program, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5971-0849
  2. Jianqiang Wu

    Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert A Coover

    Department of Basic Pharmaceutical Sciences, High Point University, High Point, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tilat A Rizvi

    Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine E Chaney

    Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ramya Ravindran

    Molecular and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jose A Cancelas

    Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Robert J Spinner

    Department of Neurosurgery, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nancy Ratner

    Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    nancy.ratner@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5030-9354

Funding

National Institutes of Health (T32-NS007453)

  • Jennifer Patritti Cram

Children's Tumor Foundation Younf Investigator Award

  • Jennifer Patritti Cram

National Institutes of Health (NIH-R01-NS28840)

  • Nancy Ratner

National Institutes of Health (NIH-R37-NS083580)

  • Nancy Ratner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2018-0103 expiration 01-2022) of Cincinnati Children's Hospital. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Cincinnati Children's Hospital.

Copyright

© 2022, Patritti Cram et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,175
    views
  • 205
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Patritti Cram
  2. Jianqiang Wu
  3. Robert A Coover
  4. Tilat A Rizvi
  5. Katherine E Chaney
  6. Ramya Ravindran
  7. Jose A Cancelas
  8. Robert J Spinner
  9. Nancy Ratner
(2022)
Purinergic receptor P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, Schwann cell proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis
eLife 11:e73511.
https://doi.org/10.7554/eLife.73511

Share this article

https://doi.org/10.7554/eLife.73511

Further reading

    1. Cancer Biology
    Qianqian Ju, Wenjing Sheng ... Cheng Sun
    Research Article

    TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.

    1. Cancer Biology
    2. Cell Biology
    Xiangning Bu, Nathanael Ashby ... Inhee Chung
    Research Article

    Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.