Human interictal epileptiform discharges are bidirectional traveling waves echoing ictal discharges

  1. Elliot H Smith  Is a corresponding author
  2. Jyun-you Liou
  3. Edward M Merricks
  4. Tyler Davis
  5. Kyle Thomson
  6. Bradley Greger
  7. Paul House
  8. Ronald G Emerson
  9. Robert Goodman
  10. Guy M McKhann
  11. Sameer Sheth
  12. Catherine Schevon
  13. John Rolston  Is a corresponding author
  1. University of Utah, United States
  2. Weill Cornell Medicine, United States
  3. Columbia University Medical Center, United States
  4. Arizona State University, United States
  5. Neurosurgical Associates, LLC, United States
  6. Hospital for Special Surgery, United States
  7. Lenox Hill Hospital, United States
  8. Baylor College of Medicine, United States
  9. Columbia University, United States

Abstract

Interictal epileptiform discharges (IEDs), also known as interictal spikes, are large intermittent electrophysiological events observed between seizures in patients with epilepsy. Though they occur far more often than seizures, IEDs are less studied, and their relationship to seizures remains unclear. To better understand this relationship, we examined multi-day recordings of microelectrode arrays implanted in human epilepsy patients, allowing us to precisely observe the spatiotemporal propagation of IEDs, spontaneous seizures, and how they relate. These recordings showed that the majority of IEDs are traveling waves, traversing the same path as ictal discharges during seizures, and with a fixed direction relative to seizure propagation. Moreover, the majority of IEDs, like ictal discharges, were bidirectional, with one predominant and a second, less frequent antipodal direction. These results reveal a fundamental spatiotemporal similarity between IEDs and ictal discharges. These results also imply that most IEDs arise in brain tissue outside the site of seizure onset and propagate toward it, indicating that the propagation of IEDs provides useful information for localizing the seizure focus.

Data availability

Raw data is available upon establishment of a data use agreement with Columbia University Medical Center as required by their Institutional Review Board (IRB). Data from human subjects was analyzed, from which the dates of implants can potentially be reconstructed. This is especially true for a study like this one, in which chronic recordings were carried out for the full duration of the patients' hospital stays. Sharing these data widely could therefore expose private health information of participants, which is why a data use agreement is required by the IRB. Interested Researchers should contact Dr. Schevon to get the data use agreement process started with the Columbia University Medical Center IRB.Analysis code is upload to GitHub: https://github.com/elliothsmith/IEDs. We have included preprocessed data files for all IEDs, hosted online at OSF: https://osf.io/zhk24/. Data files include LFP, MUA event times, and traveling wave model coefficients for all detected IEDs.

The following data sets were generated

Article and author information

Author details

  1. Elliot H Smith

    Department of Neurolosurgery, University of Utah, Salt Lake City, United States
    For correspondence
    e.h.smith@utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4323-4643
  2. Jyun-you Liou

    Department of Anesthesiology, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4851-3676
  3. Edward M Merricks

    Department of Neurology, Columbia University Medical Center, New York CIty, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8172-3152
  4. Tyler Davis

    Department of Neurosurgery, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Kyle Thomson

    Departments of Neurosurgery, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Bradley Greger

    Department of Bioengineering, Arizona State University, Tempe, United States
    Competing interests
    No competing interests declared.
  7. Paul House

    Neurosurgical Associates, LLC, Murray, United States
    Competing interests
    Paul House, is affiliated with Neurosurgical Associates, LLC. The author has no financial interests to declare..
  8. Ronald G Emerson

    Hospital for Special Surgery, New York, United States
    Competing interests
    No competing interests declared.
  9. Robert Goodman

    Lenox Hill Hospital, New York, United States
    Competing interests
    No competing interests declared.
  10. Guy M McKhann

    Department of Neurological Surgery, Columbia University Medical Center, New York, United States
    Competing interests
    Guy M McKhann, reports fees from Koh Young, Inc.
  11. Sameer Sheth

    Department of Neurological Surgery, Baylor College of Medicine, Houston, United States
    Competing interests
    Sameer Sheth, consulting for Boston Scientific, Abbott, Neuropace, Zimmer Biomet..
  12. Catherine Schevon

    Department of Neurology, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4485-7933
  13. John Rolston

    Department of Neurosurgery, University of Utah, Salt Lake City, United States
    For correspondence
    john.rolston@utah.edu
    Competing interests
    John Rolston, reports fees from Medtronic, Inc..

Funding

National Institutes of Health (NINDS R21 NS113031)

  • Elliot H Smith
  • Catherine Schevon
  • John Rolston

National Institutes of Health (NINDS K23 NS114178)

  • John Rolston

National Institutes of Health (S10 OD018211)

  • Catherine Schevon

National Institutes of Health (R01 NS084142)

  • Catherine Schevon

American Epilepsy Society (JIA)

  • Elliot H Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The Institutional Review Boards at the University of Utah (IRB_00114691) and Columbia University Medical Center (IRB- AAAB6324) approved these studies. All participants provided informed consent prior to surgery for implantation of the clinical and research electrodes.

Copyright

© 2022, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,173
    views
  • 548
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elliot H Smith
  2. Jyun-you Liou
  3. Edward M Merricks
  4. Tyler Davis
  5. Kyle Thomson
  6. Bradley Greger
  7. Paul House
  8. Ronald G Emerson
  9. Robert Goodman
  10. Guy M McKhann
  11. Sameer Sheth
  12. Catherine Schevon
  13. John Rolston
(2022)
Human interictal epileptiform discharges are bidirectional traveling waves echoing ictal discharges
eLife 11:e73541.
https://doi.org/10.7554/eLife.73541

Share this article

https://doi.org/10.7554/eLife.73541

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.