Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types

  1. Karthik Shekhar  Is a corresponding author
  2. Irene E Whitney
  3. Salwan Butrus
  4. Yi-Rong Peng
  5. Joshua R Sanes  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Harvard University, United States
  3. University of California, Los Angeles, United States

Abstract

The genesis of broad neuronal classes from multipotential neural progenitor cells has been extensively studied, but less is known about the diversification of a single neuronal class into multiple types. We used single-cell RNA-seq to study how newly-born (postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete types. Computational analysis provides evidence that RGC transcriptomic type identity is not specified at mitotic exit, but acquired by gradual, asynchronous restriction of postmitotic multipotential precursors. Some types are not identifiable until a week after they are generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to the rest of the brain before their type identity emerges. Optimal transport inference identifies groups of RGC precursors with largely non-overlapping fates, distinguished by selectively expressed transcription factors that could act as fate determinants. Our study provides a framework for investigating the molecular diversification of discrete types within a neuronal class.

Data availability

Sequencing data has been submitted under GSE185671. Reviewer token : evchicgutpqpnoj.Computational scripts are available at : https://github.com/shekharlab/mouseRGCdev

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Karthik Shekhar

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    kshekhar@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4349-6600
  2. Irene E Whitney

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    Irene E Whitney, is affiliated with Honeycomb Biotechnologies. The author has no financial interests to declare..
  3. Salwan Butrus

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Yi-Rong Peng

    Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Joshua R Sanes

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    sanesj@mcb.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8926-8836

Funding

National Institutes of Health (R37NS029169)

  • Joshua R Sanes

National Institutes of Health (R01EY022073)

  • Joshua R Sanes

National Institutes of Health (R00EY028625)

  • Karthik Shekhar

National Science Foundation (GRP DGE1752814)

  • Salwan Butrus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committees (IACUC) at Harvard University. Mice were maintained in pathogen-free facilities under standard housing conditions with continuous access to food and water. Animals used in this study include both males and females. A meta-analysis (not shown) did not show any systematic sex-related effects in either differentially expressed genes or cell-type proportions.

Copyright

© 2022, Shekhar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,201
    views
  • 448
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthik Shekhar
  2. Irene E Whitney
  3. Salwan Butrus
  4. Yi-Rong Peng
  5. Joshua R Sanes
(2022)
Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types
eLife 11:e73809.
https://doi.org/10.7554/eLife.73809

Share this article

https://doi.org/10.7554/eLife.73809

Further reading

    1. Developmental Biology
    Nathaniel C Nelson, Matthias C Kugler
    Insight

    Cells called alveolar myofibroblasts, which have a central role in the development of the lung after birth, receive an orchestrated input from a range of different signaling pathways.

    1. Developmental Biology
    Imran S Khan, Christopher Molina ... Dean Sheppard
    Research Article

    Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.