Sigma oscillations protect or reinstate motor memory depending on their temporal coordination with slow waves

  1. Judith Nicolas  Is a corresponding author
  2. Bradley R King
  3. David Levesque
  4. Latifa Lazzouni
  5. Emily BJ Coffey
  6. Stephan Swinnen
  7. Julien Doyon
  8. Julie Carrier
  9. Genevieve Albouy  Is a corresponding author
  1. KU Leuven, Belgium
  2. Unversity of Utah, United States
  3. Universite de Montreal, Canada
  4. McGill University, Canada
  5. Concordia University, Canada
  6. Université de Montréal, Canada

Abstract

Targeted memory reactivation (TMR) during post-learning sleep is known to enhance motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR enhanced slow wave (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling between slow (0.5-2 Hz) and sigma (12-16 Hz) oscillations after the SW peak was related to higher TMR effect on performance. Importantly, sounds that were not associated to learning strengthened SW-sigma coupling at the SW trough. Moreover, the increase in sigma power nested in the trough of the potential evoked by the unassociated sounds was related to the TMR benefit. Altogether, our data suggest that, depending on their precise temporal coordination during post learning sleep, slow and sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant information; two processes that critically contribute to motor memory consolidation.

Data availability

All data can be found at https://zenodo.org/record/6642860#.YqoI46hBzD5. The source code is available at https://github.com/judithnicolas/MotorMemory_OpenLoop_TMR

The following data sets were generated

Article and author information

Author details

  1. Judith Nicolas

    Department of Movement Sciences, KU Leuven, Leuven, Belgium
    For correspondence
    nicolasjdh@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7142-1449
  2. Bradley R King

    Department of Health and Kinesiology, Unversity of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3010-8755
  3. David Levesque

    Center for Advanced Research in Sleep Medicine, Universite de Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Latifa Lazzouni

    Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily BJ Coffey

    Department of Psychology, Concordia University, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephan Swinnen

    Department of Movement Sciences, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7173-435X
  7. Julien Doyon

    Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3788-4271
  8. Julie Carrier

    Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5311-2370
  9. Genevieve Albouy

    Department of Movement Sciences, KU Leuven, Leuven, Belgium
    For correspondence
    genevieve.albouy@kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5437-023X

Funding

Fonds Wetenschappelijk Onderzoek (G0D7918N)

  • Judith Nicolas
  • Bradley R King
  • David Levesque
  • Latifa Lazzouni
  • Stephan Swinnen
  • Julien Doyon
  • Julie Carrier
  • Genevieve Albouy

Fonds de Recherche du Québec - Santé (RRQNT-2018-264146)

  • Judith Nicolas
  • Bradley R King
  • David Levesque
  • Latifa Lazzouni
  • Stephan Swinnen
  • Julien Doyon
  • Julie Carrier
  • Genevieve Albouy

Fonds Wetenschappelijk Onderzoek (G0B1419N)

  • Genevieve Albouy

Fonds Wetenschappelijk Onderzoek (G099516N)

  • Genevieve Albouy

Fonds Wetenschappelijk Onderzoek (1524218N)

  • Genevieve Albouy

Fonds Wetenschappelijk Onderzoek (30446199)

  • Stephan Swinnen
  • Genevieve Albouy

HORIZON EUROPE Marie Sklodowska-Curie Actions (887955)

  • Bradley R King

HORIZON EUROPE Marie Sklodowska-Curie Actions (703490)

  • Judith Nicolas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Young healthy volunteers were recruited by local advertisements to participate in the present study. Participants gave written informed consent before participating in this research protocol, approved by the local Ethics Committee (B322201525025) and conducted according to the declaration of Helsinki (2013). The participants received a monetary compensation for their time and effort.

Copyright

© 2022, Nicolas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,977
    views
  • 377
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Judith Nicolas
  2. Bradley R King
  3. David Levesque
  4. Latifa Lazzouni
  5. Emily BJ Coffey
  6. Stephan Swinnen
  7. Julien Doyon
  8. Julie Carrier
  9. Genevieve Albouy
(2022)
Sigma oscillations protect or reinstate motor memory depending on their temporal coordination with slow waves
eLife 11:e73930.
https://doi.org/10.7554/eLife.73930

Share this article

https://doi.org/10.7554/eLife.73930

Further reading

    1. Neuroscience
    Diellor Basha, Amirmohammad Azarmehri ... Igor Timofeev
    Research Article

    Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.

    1. Neuroscience
    Maxine K Loh, Samantha J Hurh ... Mitchell F Roitman
    Research Article

    Mesolimbic dopamine encoding of non-contingent rewards and reward-predictive cues has been well established. Considerable debate remains over how mesolimbic dopamine responds to aversion and in the context of aversive conditioning. Inconsistencies may arise from the use of aversive stimuli that are transduced along different neural paths relative to reward or the conflation of responses to avoidance and aversion. Here, we made intraoral infusions of sucrose and measured how dopamine and behavioral responses varied to the changing valence of sucrose. Pairing intraoral sucrose with malaise via injection of lithium chloride (LiCl) caused the development of a conditioned taste aversion (CTA), which rendered the typically rewarding taste of sucrose aversive upon subsequent re-exposure. Following CTA formation, intraoral sucrose suppressed the activity of ventral tegmental area dopamine neurons (VTADA) and nucleus accumbens (NAc) dopamine release. This pattern of dopamine signaling after CTA is similar to intraoral infusions of innately aversive quinine and contrasts with responses to sucrose when it was novel or not paired with LiCl. Dopamine responses were negatively correlated with behavioral reactivity to intraoral sucrose and predicted home cage sucrose preference. Further, dopamine responses scaled with the strength of the CTA, which was increased by repeated LiCl pairings and weakened through extinction. Thus, the findings demonstrate differential dopamine encoding of the same taste stimulus according to its valence, which is aligned to distinct behavioral responses.