Abstract

Gene regulatory networks coordinate the formation of organs and structures that compose the evolving body plans of different organisms. We are using a simple chordate model, the Ciona embryo, to investigate the essential gene regulatory network that orchestrates morphogenesis of the notochord, a structure necessary for the proper development of all chordate embryos. Although numerous transcription factors expressed in the notochord have been identified in different chordates, several of them remain to be positioned within a regulatory framework. Here we focus on Xbp1, a transcription factor expressed during notochord formation in Ciona and other chordates. Through the identification of Xbp1-downstream notochord genes in Ciona, we found evidence of the early co-option of genes involved in the unfolded protein response to the notochord developmental program. We report the regulatory interplay between Xbp1 and Brachyury, and by extending these results to Xenopus, we show that Brachyury and Xbp1 form a cross-regulatory subcircuit of the notochord gene regulatory network that has been consolidated during chordate evolution.

Data availability

The complete dataset has been deposited into the NCBI Gene Expression Omnibus, under accession number GSE46751

The following data sets were generated

Article and author information

Author details

  1. Yushi Wu

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arun Devotta

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Diana S José-Edwards

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jamie E Kugler

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lenny J Negrón-Piñeiro

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Karina Braslavskaya

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jermyn Addy

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jean-Pierre Saint-Jeannet

    Department of Molecular Pathobiology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3259-2103
  9. Anna Di Gregorio

    Department of Molecular Pathobiology, New York University, New York, United States
    For correspondence
    adg13@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4089-7484

Funding

National Institutes of Health (R03HD098395)

  • Yushi Wu
  • Arun Devotta
  • Diana S José-Edwards
  • Jamie E Kugler
  • Lenny J Negrón-Piñeiro
  • Karina Braslavskaya
  • Jermyn Addy
  • Anna Di Gregorio

National Institutes of Health (graduate student training grant,T32HD007520)

  • Lenny J Negrón-Piñeiro

National Institutes of Health (graduate student training grant,T32GM008539)

  • Diana S José-Edwards

National Institutes of Health (Administrative supplement R03HD098395-02S1)

  • Lenny J Negrón-Piñeiro

New York University Center for Skeletal and Craniofacial Biology (Pilot grant)

  • Yushi Wu
  • Arun Devotta
  • Diana S José-Edwards
  • Jamie E Kugler
  • Lenny J Negrón-Piñeiro
  • Karina Braslavskaya
  • Jermyn Addy
  • Jean-Pierre Saint-Jeannet
  • Anna Di Gregorio

National Institutes of Health (Center Core Grant for the NYU CSCB 1P30DE020754)

  • Jean-Pierre Saint-Jeannet

National Institutes of Health (Center Grant for NYU Langone Health DART Microscopy Laboratory P30CA016087)

  • Yushi Wu
  • Anna Di Gregorio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedure minimizing discomfort and pain - only applicable to XenopusThe collection of eggs from females primed with chorionic gonadotropin hormone requires minimum procedures occasioning virtually no pain or suffering. Surgical dissection of the testes is performed on euthanized males (see below), preventing discomfort.Methods of euthanasiaMale frogs will be euthanized during the procedure, in a two-step process. They will be initially anesthetized by immersion into a solution of ethyl amino benzoate (tricaine/MS222) and then a pithing procedure of the brain and the spinal cord will be used to terminate the animal. After pithing, respiration ceases signaling death. Female frogs will be euthanized in a similar manner when no longer producing viable eggs or appear ill.

Copyright

© 2022, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,210
    views
  • 219
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yushi Wu
  2. Arun Devotta
  3. Diana S José-Edwards
  4. Jamie E Kugler
  5. Lenny J Negrón-Piñeiro
  6. Karina Braslavskaya
  7. Jermyn Addy
  8. Jean-Pierre Saint-Jeannet
  9. Anna Di Gregorio
(2022)
Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network
eLife 11:e73992.
https://doi.org/10.7554/eLife.73992

Share this article

https://doi.org/10.7554/eLife.73992

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.