Defining hierarchical protein interaction networks from spectral analysis of bacterial proteomes

  1. Mark A Zaydman  Is a corresponding author
  2. Alexander A Little
  3. Fidel Haro
  4. Valeryia Aksianiuk
  5. William J Buchser
  6. Aaron DiAntonio
  7. Jeffrey I Gordon
  8. Jeffrey Milbrandt
  9. Arjun S Raman  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Chicago, United States

Abstract

Cellular behaviors emerge from layers of molecular interactions: proteins interact to form complexes, pathways, and phenotypes. We show that hierarchical networks of protein interactions can be defined from the statistical pattern of proteome variation measured across thousands of diverse bacteria and that these networks reflect the emergence of complex bacterial phenotypes. Our results are validated through gene-set enrichment analysis and comparison to existing experimentally-derived databases. We demonstrate the biological utility of our approach by creating a model of motility in Pseudomonas aeruginosa and using it to identify a protein that affects pilus-mediated motility. Our method, SCALES (Spectral Correlation Analysis of Layered Evolutionary Signals), may be useful for interrogating genotype-phenotype relationships in bacteria.

Data availability

All data relevant to this manuscript can be downloaded, in Table format, at www.github.com/arjunsraman/Zaydman_et_al. All tables are available for download in .zip format. All code used for analyses contained within the manuscript can also be found within the same github repository; please refer to Readme.m and Supplemental_Code_9_23_2020.m for relevant Matlab scripts and to reproduce results.

Article and author information

Author details

  1. Mark A Zaydman

    Department of Pathology, Washington University in St. Louis, St Louis, United States
    For correspondence
    zaydmanm@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander A Little

    Duchossois Family Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fidel Haro

    Duchossois Family Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Valeryia Aksianiuk

    Duchossois Family Institute, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William J Buchser

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aaron DiAntonio

    Department of Developmental Biology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7262-0968
  7. Jeffrey I Gordon

    Department of Pathology, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8304-3548
  8. Jeffrey Milbrandt

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Arjun S Raman

    Duchossois Family Institute, University of Chicago, Chicago, United States
    For correspondence
    araman@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0070-1953

Funding

No external funding was received for this work.

Copyright

© 2022, Zaydman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,749
    views
  • 280
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark A Zaydman
  2. Alexander A Little
  3. Fidel Haro
  4. Valeryia Aksianiuk
  5. William J Buchser
  6. Aaron DiAntonio
  7. Jeffrey I Gordon
  8. Jeffrey Milbrandt
  9. Arjun S Raman
(2022)
Defining hierarchical protein interaction networks from spectral analysis of bacterial proteomes
eLife 11:e74104.
https://doi.org/10.7554/eLife.74104

Share this article

https://doi.org/10.7554/eLife.74104

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.