Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice

Abstract

Th2 cells provide effector functions in type 2 immune responses to helminths and allergens. Despite knowledge about molecular mechanisms of Th2 cell differentiation, there is little information on Th2 cell heterogeneity and clonal distribution between organs. To address this, we performed combined single-cell transcriptome and TCR clonotype analysis on murine Th2 cells in mesenteric lymph nodes (MLN) and lung after infection with Nippostrongylus brasiliensis (Nb) as a human hookworm infection model. We find organ-specific expression profiles, but also populations with conserved migration or effector/resident memory signatures that unexpectedly cluster with potentially regulatory Il10posFoxp3neg cells. A substantial MLN subpopulation with an interferon response signature suggests a role for interferon-signaling in Th2 differentiation or diversification. Further RNA-inferred developmental directions indicate proliferation as a hub for differentiation decisions. Although the TCR repertoire is highly heterogeneous, we identified expanded clones and CDR3 motifs. Clonal relatedness between distant organs confirmed effective exchange of Th2 effector cells, although locally expanded clones dominated the response. We further cloned an Nb-specific TCR from an expanded clone in the lung effector cluster and describe surface markers that distinguish transcriptionally defined clusters. These results provide insights in Th2 cell subset diversity and clonal relatedness in distant organs.

Data availability

Single-cell RNA sequencing data is available via GEO with the ID GSE181342

The following data sets were generated

Article and author information

Author details

  1. Daniel Radtke

    Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
    For correspondence
    daniel.radtke@uk-erlangen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3241-4542
  2. Natalie Thuma

    Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Christine Schülein

    Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Philipp Kirchner

    Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Arif B Ekici

    Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Kilian Schober

    Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. David Voehringer

    Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
    For correspondence
    David.Voehringer@uk-erlangen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6650-0639

Funding

Deutsche Forschungsgemeinschaft (RTG1660)

  • David Voehringer

Deutsche Forschungsgemeinschaft (FOR2599_TP4)

  • David Voehringer

Deutsche Forschungsgemeinschaft (TRR130_TP20)

  • David Voehringer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with German animal protection law and European Union guidelines 86/809 and were approved by the Federal Government of Lower Franconia.

Copyright

© 2022, Radtke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,407
    views
  • 267
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Radtke
  2. Natalie Thuma
  3. Christine Schülein
  4. Philipp Kirchner
  5. Arif B Ekici
  6. Kilian Schober
  7. David Voehringer
(2022)
Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice
eLife 11:e74183.
https://doi.org/10.7554/eLife.74183

Share this article

https://doi.org/10.7554/eLife.74183

Further reading

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.