KLC4 shapes axon arbors during development and mediates adult behavior

  1. Elizabeth M Haynes
  2. Korri H Burnett
  3. Jiaye He
  4. Marcel W Jean-Pierre
  5. Martin Jarzyna
  6. Kevin W Eliceiri
  7. Jan Huisken
  8. Mary C Halloran  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. National Innovation Center for Advanced Medical Devices, China
  3. Morgridge Institute for Research, United States

Abstract

Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.

Data availability

All data generated or analyzed in this study are included in the manuscript and supporting files. Source Data files have been provided for Figures 1-12.

Article and author information

Author details

  1. Elizabeth M Haynes

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  2. Korri H Burnett

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  3. Jiaye He

    National Innovation Center for Advanced Medical Devices, Shenzen, China
    Competing interests
    No competing interests declared.
  4. Marcel W Jean-Pierre

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Martin Jarzyna

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  6. Kevin W Eliceiri

    Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, United States
    Competing interests
    Kevin W Eliceiri, is a consultant for Bruker, the manufacturer of the Opterra swept field confocal used in this work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8678-670X
  7. Jan Huisken

    Morgridge Institute for Research, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7250-3756
  8. Mary C Halloran

    Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    mchalloran@wisc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6086-5928

Funding

National Institutes of Health (R01 NS086934)

  • Mary C Halloran

National Institutes of Health (R21 NS116326)

  • Mary C Halloran

National Institutes of Health (F32 NS098689)

  • Elizabeth M Haynes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animals were handled according to approved institutional animal care and use committee protocols of the University of Wisconsin (protocols L005692 and L005704).

Copyright

© 2022, Haynes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,627
    views
  • 241
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth M Haynes
  2. Korri H Burnett
  3. Jiaye He
  4. Marcel W Jean-Pierre
  5. Martin Jarzyna
  6. Kevin W Eliceiri
  7. Jan Huisken
  8. Mary C Halloran
(2022)
KLC4 shapes axon arbors during development and mediates adult behavior
eLife 11:e74270.
https://doi.org/10.7554/eLife.74270

Share this article

https://doi.org/10.7554/eLife.74270

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.