Early lock-in of structured and specialised information flows during neural development

  1. David P Shorten  Is a corresponding author
  2. Viola Priesemann
  3. Michael Wibral
  4. Joseph T Lizier
  1. University of Sydney, Australia
  2. Max Planck Institute for Dynamics and Self-Organization, Germany
  3. Georg August University, Germany

Abstract

The brains of many organisms are capable of complicated distributed computation underpinned by a highly advanced information processing capacity. Although substantial progress has been made towards characterising the information flow component of this capacity in mature brains, there is a distinct lack of work characterising its emergence during neural development. This lack of progress has been largely driven by the lack of effective estimators of information processing operations for the spiking data available for developing neural networks. Here, we leverage recent advances in this estimation task in order to quantify the changes in transfer entropy during development. We do so by studying the changes in the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We find that the quantity of information flowing across these networks undergoes a dramatic increase across development. Moreover, the spatial structure of these flows exhibits a tendency to lock in at the point when they arise, after which there is a substantial temporal correlation in the information flows across recording days. We analyse the flow of information during the crucial periods of population bursts. We find that, during these bursts, nodes tend to undertake specialised computational roles as either transmitters, mediators or receivers of information, with these roles tending to align with their average spike ordering - either early, mid or late in the bursts. Further, we find that the specialised computational roles occupied by nodes during bursts are regularly locked-in when the information flows are established. Finally, we briefly compare these results to information flows in a model network developing according to an STDP learning rule from a state of independent firing to synchronous bursting. The phenomena of large increases in information flow, early lock-in of information flow spatial structure and computational roles based on burst position were also observed in this model, hinting at the broader generality of these phenomena.

Data availability

This work made use of a publicly available dataset which can be found at: http://neurodatasharing.bme.gatech.edu/development-data/html/index.htmlAnalysis scripts are available at: https://bitbucket.org/dpshorten/cell_cultures

The following previously published data sets were used

Article and author information

Author details

  1. David P Shorten

    Faculty of Engineering, University of Sydney, Sydney, Australia
    For correspondence
    david.shorten@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2412-4705
  2. Viola Priesemann

    MPRG Priesemann, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8905-5873
  3. Michael Wibral

    Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph T Lizier

    Faculty of Engineering, University of Sydney, The University of Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9910-8972

Funding

Australian Research Council (DE160100630)

  • Joseph T Lizier

University of Sydney (SOAR Fellowship)

  • Joseph T Lizier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Shorten et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 473
    views
  • 98
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David P Shorten
  2. Viola Priesemann
  3. Michael Wibral
  4. Joseph T Lizier
(2022)
Early lock-in of structured and specialised information flows during neural development
eLife 11:e74651.
https://doi.org/10.7554/eLife.74651

Share this article

https://doi.org/10.7554/eLife.74651

Further reading

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article Updated

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.