Constructing the hierarchy of predictive auditory sequences in the marmoset brain
Abstract
Our brains constantly generate predictions of sensory input that are compared with actual inputs, propagate the prediction-errors through a hierarchy of brain regions, and subsequently update the internal predictions of the world. However, the essential feature of predictive coding, the notion of hierarchical depth and its neural mechanisms, remains largely unexplored. Here, we investigated the hierarchical depth of predictive auditory processing by combining functional magnetic resonance imaging (fMRI) and high-density whole-brain electrocorticography (ECoG) in marmoset monkeys during an auditory local-global paradigm in which the temporal regularities of the stimuli were designed at two hierarchical levels. The prediction-errors and prediction updates were examined as neural responses to auditory mismatches and omissions. Using fMRI, we identified a hierarchical gradient along the auditory pathway: midbrain and sensory regions represented local, shorter-time-scale predictive processing followed by associative auditory regions, whereas anterior temporal and prefrontal areas represented global, longer-time-scale sequence processing. The complementary ECoG recordings confirmed the activations at cortical surface areas and further differentiated the signals of prediction-error and update, which were transmitted via putative bottom-up g and top-down b oscillations, respectively. Furthermore, omission responses caused by absence of input, reflecting solely the two levels of prediction signals that are unique to the hierarchical predictive coding framework, demonstrated the hierarchical top-down process of predictions in the auditory, temporal, and prefrontal areas. Thus, our findings support the hierarchical predictive coding framework, and outline how neural networks and spatiotemporal dynamics are used to represent and arrange a hierarchical structure of auditory sequences in the marmoset brain.
Data availability
The fMRI and ECoG data that support the findings of this study are publicly available in Dryad: Jiang, Yuwei (2021), Constructing the hierarchy of predictive auditory sequences in the marmoset brain, Dryad, Dataset, https://doi.org/10.5061/dryad.j3tx95xfp.
-
Data from: Constructing the hierarchy of predictive auditory sequences in the marmoset brainDryad Digital Repository, doi:10.5061/dryad.j3tx95xfp.
Article and author information
Author details
Funding
National Science and Technology Innovation 2030 Major Program (2021ZD0204102)
- Liping Wang
Youth Innovation Promotion Association Chinese Academy of Sciences
- Yuwei Jiang
Brain/MINDS from the Japan Agency for Medical Research and Development (JP20dm0207069)
- Misako Komatsu
JSPS KAKENHI (JP19H04993)
- Misako Komatsu
Strategic Priority Research Program (XDB32070201)
- Liping Wang
Strategic Priority Research Program (XDB32030100)
- Liping Wang
Strategic Priority Research Program (XDBS01030100)
- Zhifeng Liang
Pioneer Hundreds of Talents Program from the Chinese Academy of Sciences
- Zhifeng Liang
- Liping Wang
Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)
- Liping Wang
Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)
- Zhifeng Liang
National Natural Science Foundation of China (81801354)
- Zhifeng Liang
National Natural Science Foundation of China (31900797)
- Yuwei Jiang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The protocol of the fMRI study was approved by the Ethical Committee of the Institute of Neuroscience, Chinese Academy of Sciences (no. ION-20180522). All procedures of the ECoG study were conducted in accordance with a protocol approved by the RIKEN Ethical Committee [no. W2020-2-008(2)].
Copyright
© 2022, Jiang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,432
- views
-
- 504
- downloads
-
- 35
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.
-
- Neuroscience
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.