Abstract

Bacterial survival is fraught with antagonism, including that deriving from viruses and competing bacterial cells. It is now appreciated that bacteria mount complex antiviral responses; however, whether a coordinated defense against bacterial threats is undertaken is not well understood. Previously we showed that Pseudomonas aeruginosa possess a danger sensing pathway that is a critical fitness determinant during competition against other bacteria. Here, we conducted genome-wide screens in P. aeruginosa that reveal three conserved and widespread interbacterial antagonism resistance clusters (arc1-3). We find that although arc1-3 are coordinately activated by the Gac/Rsm danger sensing system, they function independently and provide idiosyncratic defense capabilities, distinguishing them from general stress response pathways. Our findings demonstrate that Arc3 family proteins provide specific protection against phospholipase toxins by preventing the accumulation of lysophospholipids in a manner distinct from previously characterized membrane repair systems. These findings liken the response of P. aeruginosa to bacterial threats to that of eukaryotic innate immunity, wherein threat detection leads to the activation of specialized defense systems.

Data availability

Sequence data associated with this study is available from the Sequence Read Archive at BioProject PRJNA754428 (http://www.ncbi.nlm.nih.gov/bioproject/754428).

The following data sets were generated

Article and author information

Author details

  1. See-Yeun Ting

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaitlyn D LaCourse

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hannah E Ledvina

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rutan Zhang

    Department of Medicinal Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew C Radey

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hemantha D Kulasekara

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rahul Somavanshi

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Savannah K Bertolli

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Larry A Gallagher

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jennifer Kim

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kelsi M Penewit

    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Stephen J. Salipante

    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Libin Xu

    Department of Medicinal Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1021-5200
  14. S Brook Peterson

    Department of Microbiology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2648-0965
  15. Joseph D Mougous

    Department of Microbiology, University of Washington, Seattle, United States
    For correspondence
    mougous@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5417-4861

Funding

National Institutes of Health (AI080609)

  • Joseph D Mougous

National Institutes of Health (DK089507)

  • Stephen J. Salipante

National Institutes of Health (R01AI136979)

  • Libin Xu

Cystic Fibrosis Foundation (SINGH19R0)

  • Stephen J. Salipante

National Institutes of Health (S10OD026741)

  • Stephen J. Salipante

Howard Hughes Medical Institute

  • Joseph D Mougous

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Ting et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. See-Yeun Ting
  2. Kaitlyn D LaCourse
  3. Hannah E Ledvina
  4. Rutan Zhang
  5. Matthew C Radey
  6. Hemantha D Kulasekara
  7. Rahul Somavanshi
  8. Savannah K Bertolli
  9. Larry A Gallagher
  10. Jennifer Kim
  11. Kelsi M Penewit
  12. Stephen J. Salipante
  13. Libin Xu
  14. S Brook Peterson
  15. Joseph D Mougous
(2022)
Discovery of coordinately regulated pathways that provide innate protection against interbacterial antagonism
eLife 11:e74658.
https://doi.org/10.7554/eLife.74658

Share this article

https://doi.org/10.7554/eLife.74658

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.

    1. Microbiology and Infectious Disease
    Yuqian Wang, Guibin Wang ... Xiangmin Lin
    Research Article

    Protein NƐ-lysine acetylation (Kac) modifications play crucial roles in diverse physiological and pathological functions in cells. In prokaryotic cells, there are only two types of lysine deacetylases (KDACs) that are Zn2+- or NAD+-dependent. In this study, we reported a protein, AhCobQ, in Aeromonas hydrophila ATCC 7966 that presents NAD+- and Zn2+-independent KDAC activity. Furthermore, its KDAC activity is located in an unidentified domain (from 195 to 245 aa). Interestingly, AhCobQ has no homology with current known KDACs, and no homologous protein was found in eukaryotic cells. A protein substrate analysis showed that AhCobQ has specific protein substrates in common with other known KDACs, indicating that these KDACs can dynamically co-regulate the states of Kac proteins. Microbiological methods employed in this study affirmed AhCobQ’s positive regulation of isocitrate dehydrogenase (ICD) enzymatic activity at the K388 site, implicating AhCobQ in the modulation of bacterial enzymatic activities. In summary, our findings present compelling evidence that AhCobQ represents a distinctive type of KDAC with significant roles in bacterial biological functions.