Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome

  1. Na Xiao
  2. Jie Wang
  3. Ting Wang
  4. Xingliang Xiong
  5. Junyi Zhou
  6. Xian Su
  7. Jing Peng
  8. Chao Yang
  9. Xiaofeng Li
  10. Ge Lin
  11. Guangxiu Lu
  12. Fei Gong  Is a corresponding author
  13. Lamei Cheng  Is a corresponding author
  1. National Engineering and Research Center of Human Stem Cells, China
  2. Central South University, China
  3. Hunan Normal University, China
  4. Reproductive and Genetic Hospital of CITIC-Xiangya, China

Abstract

B cells contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Clinically, metformin is used to treat PCOS, but it is unclear whether metformin exerts its therapeutic effect by regulating B cells. Here, we showed that the expression level of TNF-α in peripheral blood B cells from PCOS patient was increased. Metformin used in vitro and in vivo was able to reduce the production of TNF-α in B cells from PCOS patient. Administration of metformin improved mouse PCOS phenotypes induced by dehydroepiandrosterone (DHEA) and also inhibited TNF-α expression in splenic B cells. Further, metformin induced metabolic reprogramming of B cells in PCOS patients, including the alteration in mitochondrial morphology, the decrease in mitochondrial membrane potential, ROS production and glucose uptake. In DHEA-induced mouse PCOS model, metformin altered metabolic intermediates in splenic B cells. Moreover, the inhibition of TNF-α expression and metabolic reprogramming in B cells of PCOS patients and mouse model by metformin were associated with decreased mTOR phosphorylation. Together, TNF-α-producing B cells are involved in the pathogenesis of PCOS, and metformin inhibits mTOR phosphorylation and affects metabolic reprogramming, thereby inhibiting TNF-α expression in B cells, which may be a new mechanism of metformin in the treatment of PCOS.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 2, 3, 4, 5, 6, 7 and 8.Figure 1-source data 1, Figure 2-source data 1, Figure 3-source data 1, Figure 4-source data 1, Figure 5-source data 1, Figure 6-source data 1, Figure 7-source data 1, Figure 8-source data 1 contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Na Xiao

    National Engineering and Research Center of Human Stem Cells, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2376-4073
  2. Jie Wang

    National Engineering and Research Center of Human Stem Cells, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ting Wang

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xingliang Xiong

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Junyi Zhou

    Hunan Normal University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xian Su

    National Engineering and Research Center of Human Stem Cells, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jing Peng

    National Engineering and Research Center of Human Stem Cells, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Chao Yang

    National Engineering and Research Center of Human Stem Cells, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaofeng Li

    Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Ge Lin

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Guangxiu Lu

    National Engineering and Research Center of Human Stem Cells, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Fei Gong

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    For correspondence
    gongfei0218@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
  13. Lamei Cheng

    Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
    For correspondence
    LameiCheng@csu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8685-3674

Funding

National Natural Science Foundation of China

  • Lamei Cheng

China Postdoctoral Science Foundation

  • Na Xiao

Hunan Provincial National Science Foundation of China

  • Na Xiao

L.C.designed the research studies; analyzed the data; revised the manuscript. N.X. designed and performed the experiments; collected, analyzed, and interpreted the data; performed statistical analysis;wrote the manuscript.

Ethics

Animal experimentation: All animal experiments were approved by the ethic review committee of Central South University(NO.2019-S111)

Human subjects: Patients and control subjects were recruited from the Reproductive & Genetic Hospital of CITIC-Xiangya. This study was approved by the ethic committee of the Reproductive & Genetic Hospital of CITIC-Xiangya(NO.LL-SC-2015-007), and all participants provided informed consent.

Copyright

© 2022, Xiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,036
    views
  • 305
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Na Xiao
  2. Jie Wang
  3. Ting Wang
  4. Xingliang Xiong
  5. Junyi Zhou
  6. Xian Su
  7. Jing Peng
  8. Chao Yang
  9. Xiaofeng Li
  10. Ge Lin
  11. Guangxiu Lu
  12. Fei Gong
  13. Lamei Cheng
(2022)
Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome
eLife 11:e74713.
https://doi.org/10.7554/eLife.74713

Share this article

https://doi.org/10.7554/eLife.74713

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.