Coil-to-a-helix transition at the Nup358-BicD2 interfaceactivates BicD2 for dynein recruitment

  1. James Gibson
  2. Heying Cui
  3. M Yusuf Ali
  4. Xioaxin Zhao
  5. Erik W Debler
  6. Jing Zhao
  7. Kathleen M Trybus  Is a corresponding author
  8. Sozanne R Solmaz  Is a corresponding author
  9. Chunyu Wang  Is a corresponding author
  1. Rensselaer Polytechnic Institute, United States
  2. Binghamton University, United States
  3. University of Vermont, United States
  4. Thomas Jefferson University, United States

Abstract

Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance (NMR) titration and chemical exchange saturation transfer (CEST), mutagenesis and circular dichroism spectroscopy (CD), a Nup358 a-helix encompassing residues 2162-2184 was identified, which transitioned from a random coil to an a-helical conformation upon BicD2-binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 though a 'cargo recognition a-helix', a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.

Data availability

Protein backbone assignments have been deposited in the BMRB under accession code 5182. All other data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1, 2, 3, 4, 5, 6, 7, and 8.

Article and author information

Author details

  1. James Gibson

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9378-0135
  2. Heying Cui

    Department of Chemistry, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. M Yusuf Ali

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xioaxin Zhao

    Department of Biological Sciences, Binghamton University, Binghamton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik W Debler

    Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2587-2150
  6. Jing Zhao

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kathleen M Trybus

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    For correspondence
    Kathleen.Trybus@med.uvm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5583-8500
  8. Sozanne R Solmaz

    Department of Chemistry, Binghamton University, Binghamton, United States
    For correspondence
    ssolmaz@binghamton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1703-3701
  9. Chunyu Wang

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    For correspondence
    wangc5@rpi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5165-7959

Funding

NIH Office of the Director (R01 GM144578)

  • M Yusuf Ali
  • Sozanne R Solmaz
  • Chunyu Wang

NIH Office of the Director (CA206592)

  • Chunyu Wang

NIH Office of the Director (AG069039)

  • Chunyu Wang

NIH Office of the Director (R15 GM128119)

  • Sozanne R Solmaz

Chemistry Department and the Research Foundation of SUNY

  • Sozanne R Solmaz

NIH Office of the Director (R35 GM136288)

  • Kathleen M Trybus

NIH Office of the Director (R03 NS114115)

  • M Yusuf Ali

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gibson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,877
    views
  • 257
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Gibson
  2. Heying Cui
  3. M Yusuf Ali
  4. Xioaxin Zhao
  5. Erik W Debler
  6. Jing Zhao
  7. Kathleen M Trybus
  8. Sozanne R Solmaz
  9. Chunyu Wang
(2022)
Coil-to-a-helix transition at the Nup358-BicD2 interfaceactivates BicD2 for dynein recruitment
eLife 11:e74714.
https://doi.org/10.7554/eLife.74714

Share this article

https://doi.org/10.7554/eLife.74714

Further reading

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.

    1. Structural Biology and Molecular Biophysics
    Kazi A Hossain, Lukasz Nierzwicki ... Giulia Palermo
    Research Article

    xCas9 is an evolved variant of the CRISPR-Cas9 genome editing system, engineered to improve specificity and reduce undesired off-target effects. How xCas9 expands the DNA targeting capability of Cas9 by recognising a series of alternative protospacer adjacent motif (PAM) sequences while ignoring others is unknown. Here, we elucidate the molecular mechanism underlying xCas9’s expanded PAM recognition and provide critical insights for expanding DNA targeting. We demonstrate that while wild-type Cas9 enforces stringent guanine selection through the rigidity of its interacting arginine dyad, xCas9 introduces flexibility in R1335, enabling selective recognition of specific PAM sequences. This increased flexibility confers a pronounced entropic preference, which also improves recognition of the canonical TGG PAM. Furthermore, xCas9 enhances DNA binding to alternative PAM sequences during the early evolution cycles, while favouring binding to the canonical PAM in the final evolution cycle. This dual functionality highlights how xCas9 broadens PAM recognition and underscores the importance of fine-tuning the flexibility of the PAM-interacting cleft as a key strategy for expanding the DNA targeting potential of CRISPR-Cas systems. These findings deepen our understanding of DNA recognition in xCas9 and may apply to other CRISPR-Cas systems with similar PAM recognition requirements.