Abstract

Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.

Data availability

Proteomics mass spectrometry data have been deposited in PRIDE:Project accession: PXD017677Project DOI: 10.6019/PXD017677

The following data sets were generated

Article and author information

Author details

  1. Pascal Forcella

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Niklas Ifflander

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Chiara Rolando

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Elli-Anna Balta

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Aikaterini Lampada

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Claudio Giachino

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Tanzila Mukhtar

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Bock

    Proteomics Core Facility, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9314-5318
  9. Verdon Taylor

    Department of Biomedicine, University of Basel, Basel, Switzerland
    For correspondence
    verdon.taylor@unibas.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3497-5976

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_162609)

  • Verdon Taylor

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_182388)

  • Verdon Taylor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: According to Swiss Federal and Swiss Veterinary office regulations, all mice were bred and kept in a specific pathogen-free animal facility with 12 hours day-night cycle and free access to clean food and water. All mice were healthy and immunocompetent. All procedures were approved by the Basel Cantonal Veterinary Office under license number 2537 (Ethics commission Basel-Stadt, Basel Switzerland).

Copyright

© 2024, Forcella et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,040
    views
  • 127
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pascal Forcella
  2. Niklas Ifflander
  3. Chiara Rolando
  4. Elli-Anna Balta
  5. Aikaterini Lampada
  6. Claudio Giachino
  7. Tanzila Mukhtar
  8. Thomas Bock
  9. Verdon Taylor
(2024)
SAFB regulates hippocampal stem cell fate by targeting Drosha to destabilize Nfib mRNA
eLife 13:e74940.
https://doi.org/10.7554/eLife.74940

Share this article

https://doi.org/10.7554/eLife.74940

Further reading

    1. Neuroscience
    Geoffrey W Meissner, Allison Vannan ... FlyLight Project Team
    Research Article

    Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.

    1. Neuroscience
    Hyun Jee Lee, Jingting Liang ... Hang Lu
    Research Advance

    Cell identification is an important yet difficult process in data analysis of biological images. Previously, we developed an automated cell identification method called CRF_ID and demonstrated its high performance in Caenorhabditis elegans whole-brain images (Chaudhary et al., 2021). However, because the method was optimized for whole-brain imaging, comparable performance could not be guaranteed for application in commonly used C. elegans multi-cell images that display a subpopulation of cells. Here, we present an advancement, CRF_ID 2.0, that expands the generalizability of the method to multi-cell imaging beyond whole-brain imaging. To illustrate the application of the advance, we show the characterization of CRF_ID 2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work demonstrates that high-accuracy automated cell annotation in multi-cell imaging can expedite cell identification and reduce its subjectivity in C. elegans and potentially other biological images of various origins.