The missing link between genetic association and regulatory function

  1. Noah James Connally  Is a corresponding author
  2. Sumaiya Nazeen
  3. Daniel Lee
  4. Huwenbo Shi
  5. John Stamatoyannopoulos
  6. Sung Chun
  7. Chris Cotsapas  Is a corresponding author
  8. Christopher A Cassa  Is a corresponding author
  9. Shamil R Sunyaev  Is a corresponding author
  1. Harvard Medical School, United States
  2. Harvard TH Chan School of Public Health, United States
  3. Altius Institute for Biomedical Sciences, United States
  4. Boston Children's Hospital, United States
  5. Broad Institute, United States
  6. Brigham and Women's Hospital, United States

Abstract

The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic data sets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic eQTLs, suggesting that better models are needed. The field must confront this deficit, and pursue this 'missing regulation'.

Data availability

Numerical data for results is included in Source Data 1.The dataset generated (GWAS summary statistics conditioned on coding variants) can be found at doi:10.5061/dryad.612jm644q

The following data sets were generated
    1. Connally NJ
    (2022) GWAS results conditioned on coding variants
    Dryad Digital Repository, doi:10.5061/dryad.612jm644q.
The following previously published data sets were used
    1. UK Biobank
    (2012) UK Biobank
    http://www.ukbiobank.ac.uk/.
    1. TOPMed Consortium
    (2021) NHLBI TOPMed
    https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2.

Article and author information

Author details

  1. Noah James Connally

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    For correspondence
    noahconnally@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3818-6739
  2. Sumaiya Nazeen

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Lee

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Huwenbo Shi

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John Stamatoyannopoulos

    Altius Institute for Biomedical Sciences, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sung Chun

    Division of Pulmonary Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chris Cotsapas

    Program in Medical and Population Genetics, Broad Institute, New Haven, United States
    For correspondence
    cotsapas@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher A Cassa

    Division of Genetics, Brigham and Women's Hospital, Boston, United States
    For correspondence
    cassa@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Shamil R Sunyaev

    Division of Genetics, Brigham and Women's Hospital, Boston, United States
    For correspondence
    ssunyaev@rics.bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5715-5677

Funding

National Institutes of Health (R35GM127131)

  • Shamil R Sunyaev

National Institutes of Health (R01HG010372)

  • Shamil R Sunyaev

National Institutes of Health (R01MH101244)

  • Shamil R Sunyaev

National Institutes of Health (U01HG012009)

  • Chris Cotsapas

National Institutes of Health (T32GM74897)

  • Shamil R Sunyaev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Connally et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,948
    views
  • 1,049
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah James Connally
  2. Sumaiya Nazeen
  3. Daniel Lee
  4. Huwenbo Shi
  5. John Stamatoyannopoulos
  6. Sung Chun
  7. Chris Cotsapas
  8. Christopher A Cassa
  9. Shamil R Sunyaev
(2022)
The missing link between genetic association and regulatory function
eLife 11:e74970.
https://doi.org/10.7554/eLife.74970

Share this article

https://doi.org/10.7554/eLife.74970

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.