Abstract

Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory syndrome caused by mutations of NLRP3 gene encoding cryopyrin. Familial cold autoinflammatory syndrome (FCAS), the mildest form of CAPS, is characterized by cold-induced inflammation induced by the overproduction of IL-1β. However, the molecular mechanism of how mutated NLRP3 causes inflammasome activation in CAPS remains unclear. Here, we found that CAPS-associated NLRP3 mutants form cryo-sensitive aggregates that function as a scaffold for inflammasome activation. Cold exposure promoted inflammasome assembly and subsequent IL-1β release triggered by mutated NLRP3. While K+ efflux was dispensable, Ca2+ was necessary for mutated NLRP3-mediated inflammasome assembly. Notably, Ca2+ influx was induced during mutated NLRP3-mediated inflammasome assembly. Furthermore, caspase-1 inhibition prevented Ca2+ influx and inflammasome assembly induced by the mutated NLRP3, suggesting a feed-forward Ca2+ influx loop triggered by mutated NLRP3. Thus, the mutated NLRP3 forms cryo-sensitive aggregates to promote inflammasome assembly distinct from canonical NLRP3 inflammasome activation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1-8.

Article and author information

Author details

  1. Tadayoshi Karasawa

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    For correspondence
    tdys.karasawa@jichi.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6738-2360
  2. Takanori Komada

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3360-3185
  3. Naoya Yamada

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Emi Aizawa

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoshiko Mizushina

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9988-5755
  6. Sachiko Watanabe

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Chintogtokh Baatarjav

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Takayoshi Matsumura

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Masafumi Takahashi

    Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
    For correspondence
    masafumi2@jichi.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2716-7532

Funding

Japan Society for the Promotion of Science (18K08112)

  • Masafumi Takahashi

Japan Society for the Promotion of Science (21K08114)

  • Masafumi Takahashi

Japan Society for the Promotion of Science (16H01395)

  • Masafumi Takahashi

Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care

  • Tadayoshi Karasawa

Japan Agency for Medical Research and Development

  • Masafumi Takahashi

Ministry of Education, Culture, Sports, Science and Technology

  • Masafumi Takahashi

We declare that the funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Karasawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,782
    views
  • 390
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tadayoshi Karasawa
  2. Takanori Komada
  3. Naoya Yamada
  4. Emi Aizawa
  5. Yoshiko Mizushina
  6. Sachiko Watanabe
  7. Chintogtokh Baatarjav
  8. Takayoshi Matsumura
  9. Masafumi Takahashi
(2022)
Cryo-sensitive aggregation triggers NLRP3 inflammasome assembly in cryopyrin-associated periodic syndrome
eLife 11:e75166.
https://doi.org/10.7554/eLife.75166

Share this article

https://doi.org/10.7554/eLife.75166

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.