Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43

  1. Dongeun Heo
  2. Jonathan Ling
  3. Gian C Molina-Castro
  4. Abraham J Langseth
  5. Ari Waisman
  6. Klaus-Armin Nave
  7. Wiebke Möbius
  8. Phil C Wong
  9. Dwight E Bergles  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. Johns Hopkins School of Medicine, United States
  3. Johannes Gutenberg University, Germany
  4. Max Planck Institute of Experimental Medicine, Germany

Abstract

Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocalization and aggregation of the RNA binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligodendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP-43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to eventual oligodendrocyte degeneration, seizures and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43 deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult CNS induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease.

Data availability

Bulk RNA-seq data of P30 FACS-isolated oligodendrocytes from Mobp-TDP43 and Mog-TDP43 mouse lines will be deposited to GEO. Processed data, including the raw count number, normalized counts, and FPKM values, are provided as Supplementary Data (Supplementary Data - Differential gene expression Excel file of bulk RNA-Seq.xlsx).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Dongeun Heo

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4913-2253
  2. Jonathan Ling

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1927-9729
  3. Gian C Molina-Castro

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0700-4042
  4. Abraham J Langseth

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Ari Waisman

    Institute for Molecular Medicine, Johannes Gutenberg University, Mainz, Germany
    Competing interests
    No competing interests declared.
  6. Klaus-Armin Nave

    Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    Klaus-Armin Nave, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8724-9666
  7. Wiebke Möbius

    Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2902-7165
  8. Phil C Wong

    Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Dwight E Bergles

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    dbergles@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7133-7378

Funding

National Institutes of Health (R01 AG072305)

  • Dwight E Bergles

National Multiple Sclerosis Society

  • Dwight E Bergles

National Institutes of Health (F31NS110204)

  • Dongeun Heo

European Research Council (MyeliNANO)

  • Klaus-Armin Nave

Deutsche Forschungsgemeinschaft (DFG-TRR274)

  • Klaus-Armin Nave

Target ALS

  • Dwight E Bergles

Dr. Miriam and Sheldon G Adelson Medical Research Foundation

  • Dwight E Bergles

Max-Planck-Institute of Experimental Medicine (open access funding)

  • Wiebke Möbius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations by the Institutional Animal Care and Use Committee (IACUC) of the Johns Hopkins School of Medicine under protocols (MO17M338, MO17M268, MO20M206, and MO20M344). All survival surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering. All terminal experiments were carried out under sodium pentobarbital anesthesia.

Copyright

© 2022, Heo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,380
    views
  • 604
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dongeun Heo
  2. Jonathan Ling
  3. Gian C Molina-Castro
  4. Abraham J Langseth
  5. Ari Waisman
  6. Klaus-Armin Nave
  7. Wiebke Möbius
  8. Phil C Wong
  9. Dwight E Bergles
(2022)
Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43
eLife 11:e75230.
https://doi.org/10.7554/eLife.75230

Share this article

https://doi.org/10.7554/eLife.75230

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.