Prefrontal cortex supports speech perception in listeners with cochlear implants

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. University of Utah, United States

Abstract

Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

Data availability

Stimuli, data, and analysis scripts are available from https://osf.io/nkb5v/.

The following data sets were generated

Article and author information

Author details

  1. Arefeh Sherafati

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2543-0851
  2. Noel Dwyer

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  3. Aahana Bajracharya

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  4. Mahlega Samira Hassanpour

    moran Eye Center, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Adam T Eggebrecht

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  6. Jill B Firszt

    Department of Otolaryngology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  7. Joseph P Culver

    Department of Radiology, Washington University in St. Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  8. Jonathan Erik Peelle

    Department of Otolaryngology, Washington University in St. Louis, Saint Louis, United States
    For correspondence
    jpeelle@wustl.edu
    Competing interests
    Jonathan Erik Peelle, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9194-854X

Funding

National Institutes of Health (R21DC015884)

  • Jonathan Erik Peelle

National Institutes of Health (R21DC016086)

  • Jonathan Erik Peelle

National Institutes of Health (K01MH103594)

  • Adam T Eggebrecht

National Institutes of Health (R21MH109775)

  • Adam T Eggebrecht

National Institutes of Health (R01NS090874)

  • Joseph P Culver

National Institutes of Health (R01NS109487)

  • Joseph P Culver

National Institutes of Health (R21DC015884)

  • Joseph P Culver

National Institutes of Health (R21DC016086)

  • Joseph P Culver

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects were native speakers of English with no self-reported history of neurological or psychiatric disorders. All aspects of these studies were approved by the Human Research Protection Office (HRPO) of the Washington University School of Medicine. Subjects were recruited from the Washington University campus and the surrounding community (IRB 201101896, IRB 201709126). All subjects gave informed consent and were compensated for their participation in accordance with institutional and national guidelines.

Copyright

© 2022, Sherafati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,776
    views
  • 365
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arefeh Sherafati
  2. Noel Dwyer
  3. Aahana Bajracharya
  4. Mahlega Samira Hassanpour
  5. Adam T Eggebrecht
  6. Jill B Firszt
  7. Joseph P Culver
  8. Jonathan Erik Peelle
(2022)
Prefrontal cortex supports speech perception in listeners with cochlear implants
eLife 11:e75323.
https://doi.org/10.7554/eLife.75323

Share this article

https://doi.org/10.7554/eLife.75323

Further reading

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance Updated

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (eight total) in a conditioned suppression setting using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. These shock-paired visual cues further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.