Internally generated time in the rodent hippocampus is logarithmically compressed

  1. Rui Cao  Is a corresponding author
  2. John H Bladon
  3. Stephen J Charczynski
  4. Michael E Hasselmo
  5. Marc W Howard
  1. Boston University, United States
  2. Brandeis University, United States

Abstract

The Weber-Fechner law proposes that our perceived sensory input increases with physical input on a logarithmic scale. Hippocampal 'time cells' carry a record of recent experience by firing sequentially during a circumscribed period of time after a triggering stimulus. Different cells have'time fields' at different delays up to at least tens of seconds. Past studies suggest that time cells represent a compressed timeline by demonstrating that fewer time cells fire late in the delay and their time fields are wider. This paper asks whether the compression of time cells obeys the Weber-Fechner Law. Time cells were studied with a hierarchical Bayesian model that simultaneously accounts for the firing pattern at the trial level, cell level, and population level. This procedure allows separate estimates of the within-trial receptive field width and the across-trial variability. After isolating across-trial variability, time field width increased linearly with delay. Further, the time cell population was distributed evenly along a logarithmic time axis. These findings provide strong quantitative evidence that the neural temporal representation in rodent hippocampus is logarithmically compressed and obeys a neural Weber-Fechner Law.

Data availability

The data and code for all the analysis is available on Open Science Framework under the corresponding author (https://osf.io/pqhjz/)

The following data sets were generated

Article and author information

Author details

  1. Rui Cao

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    For correspondence
    caorui.beilia@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0538-5336
  2. John H Bladon

    Department of Psychology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen J Charczynski

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael E Hasselmo

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc W Howard

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1478-1237

Funding

Multidisciplinary University Research Initiative (N00014-16-1-2832)

  • Rui Cao
  • Stephen J Charczynski
  • Michael E Hasselmo
  • Marc W Howard

National Institute of Biomedical Imaging and Bioengineering (R01EB022864)

  • Rui Cao
  • Stephen J Charczynski
  • Marc W Howard

National Institute of Mental Health (R01MH112169)

  • Rui Cao
  • John H Bladon
  • Stephen J Charczynski
  • Marc W Howard

National Institute of Mental Health (R01MH095297)

  • Rui Cao
  • John H Bladon
  • Stephen J Charczynski
  • Michael E Hasselmo
  • Marc W Howard

National Institute of Mental Health (R01MH132171)

  • John H Bladon
  • Michael E Hasselmo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were conducted in accordance with the requirements set by the National Institutes of Health, and were approved by the Boston University Institutional Animal Care and Use Committee (BU IACUC protocol #16-021). Animals were given ad-libitum water and maintained at a minimum of 85% of their ad libitum feeding body weight during all behavioral training and testing. Surgeries were performed under isoflurane anesthesia, and analgesics were administered postoperatively.

Copyright

© 2022, Cao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,036
    views
  • 296
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Cao
  2. John H Bladon
  3. Stephen J Charczynski
  4. Michael E Hasselmo
  5. Marc W Howard
(2022)
Internally generated time in the rodent hippocampus is logarithmically compressed
eLife 11:e75353.
https://doi.org/10.7554/eLife.75353

Share this article

https://doi.org/10.7554/eLife.75353

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.