Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel

  1. Zheng Zhou  Is a corresponding author
  2. Valentyna Krashevska
  3. Rahayu Widyastuti
  4. Stefan Scheu
  5. Anton Potapov
  1. University of Göttingen, Germany
  2. Institut Pertanian Bogor, Indonesia

Abstract

Agricultural expansion is among the main threats to biodiversity and functions of tropical ecosystems. It has been shown that conversion of rainforest into plantations erodes biodiversity, but further consequences for food-web structure and energetics of belowground communities remains little explored. We used a unique combination of stable isotope analysis and food web energetics to analyze in a comprehensive way consequences of the conversion of rainforest into oil palm and rubber plantations on the structure of and channeling of energy through soil animal food webs in Sumatra, Indonesia. Across the 23 animal groups studied, most of the taxa switched to freshly-fixed plant carbon (low Δ13C values) indicating 'fast' energy channeling in plantations as opposed to 'slow' energy channeling through the detrital pathway in rainforests (high Δ13C values). These shifts led to changes in isotopic divergence, dispersion, evenness and uniqueness. However, earthworms as major detritivores stayed unchanged in their trophic niche and monopolized the detrital pathway in plantations, resulting in similar energetic metrics across land-use systems. Functional diversity metrics of soil food webs were associated with reduced amount of litter, tree density and species richness in plantations, providing guidelines how to improve the complexity of the structure of and channeling of energy through soil food webs. Our results highlight the strong restructuring of soil food webs with the conversion of rainforest into plantations threatening soil functioning and ecosystem stability in the long term.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Zheng Zhou

    JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
    For correspondence
    zzhou@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8078-6378
  2. Valentyna Krashevska

    JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9765-5833
  3. Rahayu Widyastuti

    Department of Soil Sciences and Land Resources, Institut Pertanian Bogor, Bogor, Indonesia
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Scheu

    JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anton Potapov

    JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (192626868-SFB 990)

  • Zheng Zhou

Deutsche Forschungsgemeinschaft (192626868-SFB 990)

  • Valentyna Krashevska

Deutsche Forschungsgemeinschaft (192626868-SFB 990)

  • Rahayu Widyastuti

Deutsche Forschungsgemeinschaft (192626868-SFB 990)

  • Stefan Scheu

Deutsche Forschungsgemeinschaft (192626868-SFB 990)

  • Anton Potapov

China Scholarship Council (202004910314)

  • Zheng Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,951
    views
  • 319
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zheng Zhou
  2. Valentyna Krashevska
  3. Rahayu Widyastuti
  4. Stefan Scheu
  5. Anton Potapov
(2022)
Tropical land use alters functional diversity of soil food webs and leads to monopolization of the detrital energy channel
eLife 11:e75428.
https://doi.org/10.7554/eLife.75428

Share this article

https://doi.org/10.7554/eLife.75428

Further reading

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.

    1. Ecology
    Laura Fargeot, Camille Poesy ... Blanchet Simon
    Research Article

    Understanding the relationships between biodiversity and ecosystem functioning stands as a cornerstone in ecological research. Extensive evidence now underscores the profound impact of species loss on the stability and dynamics of ecosystem functions. However, it remains unclear whether the loss of genetic diversity within key species yields similar consequences. Here, we delve into the intricate relationship between species diversity, genetic diversity, and ecosystem functions across three trophic levels – primary producers, primary consumers, and secondary consumers – in natural aquatic ecosystems. Our investigation involves estimating species diversity and genome-wide diversity – gauged within three pivotal species – within each trophic level, evaluating seven key ecosystem functions, and analyzing the magnitude of the relationships between biodiversity and ecosystem functions (BEFs). We found that, overall, the absolute effect size of genetic diversity on ecosystem functions mirrors that of species diversity in natural ecosystems. We nonetheless unveil a striking dichotomy: while genetic diversity was positively correlated with various ecosystem functions, species diversity displays a negative correlation with these functions. These intriguing antagonist effects of species and genetic diversity persist across the three trophic levels (underscoring its systemic nature), but were apparent only when BEFs were assessed within trophic levels rather than across them. This study reveals the complexity of predicting the consequences of genetic and species diversity loss under natural conditions, and emphasizes the need for further mechanistic models integrating these two facets of biodiversity.