Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain

Abstract

Hierarchical temporal dynamics are a fundamental computational property of the brain; however, there are no whole-brain, noninvasive investigations into timescales of neural processing in animal models. To that end, we used the spatial resolution and sensitivity of ultrahigh field fMRI performed at 10.5 Tesla to probe timescales across the whole macaque brain. We uncovered within-species consistency between timescales estimated from fMRI and electrophysiology. Crucially, we extended existing electrophysiological hierarchies to whole brain topographies. Our results validate the complementary use of hemodynamic and electrophysiological intrinsic timescales, establishing a basis for future translational work. Further, with these results in hand, we were able to show that one facet of the high-dimensional functional connectivity topography of any region in the brain is closely related to hierarchical temporal dynamics. We demonstrated that intrinsic timescales are organized along spatial gradients that closely match functional connectivity gradient topographies across the whole brain. We conclude that intrinsic timescales are a unifying organizational principle of neural processing across the whole brain.

Data availability

The functional connectivity gradient maps and the timescale maps have been uploaded to figshare.Functional connectivity gradients: https://doi.org/10.6084/m9.figshare.19189331Intrinsic neural timescales: https://doi.org/10.6084/m9.figshare.19197026

The following data sets were generated

Article and author information

Author details

  1. Ana MG Manea

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    For correspondence
    manea006@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4786-9657
  2. Anna Zilverstand

    Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4889-9700
  3. Kamil Ugurbil

    Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah Heilbronner

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jan Zimmermann

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

NIH (P41 EB027061)

  • Kamil Ugurbil
  • Jan Zimmermann

NIH (R01 MH118257)

  • Sarah Heilbronner

NIH (R56 EB031765)

  • Jan Zimmermann

NIH (R01 MH128177)

  • Jan Zimmermann

Digital Technologies Initiative

  • Jan Zimmermann

Minnesota Institute of Robotics

  • Jan Zimmermann

Young Investigator Awards from the Brain & Behavior Research Foundation

  • Anna Zilverstand
  • Sarah Heilbronner

NIH (P30DA048742)

  • Anna Zilverstand
  • Sarah Heilbronner
  • Jan Zimmermann

UMN AIRP award

  • Anna Zilverstand
  • Sarah Heilbronner
  • Jan Zimmermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were carried out in accordance with the University of Minnesota Institutional Animal Care and Use Committee and the National Institute of Health standards for the care and use of nonhuman primates. Protocol IDs: 2005-38127A 2005-38135A 1911-37623A

Copyright

© 2022, Manea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,701
    views
  • 374
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana MG Manea
  2. Anna Zilverstand
  3. Kamil Ugurbil
  4. Sarah Heilbronner
  5. Jan Zimmermann
(2022)
Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain
eLife 11:e75540.
https://doi.org/10.7554/eLife.75540

Share this article

https://doi.org/10.7554/eLife.75540

Further reading

    1. Neuroscience
    Jakob Rupert, Dragomir Milovanovic
    Insight

    By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.

    1. Neuroscience
    Yi-Yun Ho, Qiuwei Yang ... Melissa R Warden
    Research Article

    The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.