Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain

Abstract

Hierarchical temporal dynamics are a fundamental computational property of the brain; however, there are no whole-brain, noninvasive investigations into timescales of neural processing in animal models. To that end, we used the spatial resolution and sensitivity of ultrahigh field fMRI performed at 10.5 Tesla to probe timescales across the whole macaque brain. We uncovered within-species consistency between timescales estimated from fMRI and electrophysiology. Crucially, we extended existing electrophysiological hierarchies to whole brain topographies. Our results validate the complementary use of hemodynamic and electrophysiological intrinsic timescales, establishing a basis for future translational work. Further, with these results in hand, we were able to show that one facet of the high-dimensional functional connectivity topography of any region in the brain is closely related to hierarchical temporal dynamics. We demonstrated that intrinsic timescales are organized along spatial gradients that closely match functional connectivity gradient topographies across the whole brain. We conclude that intrinsic timescales are a unifying organizational principle of neural processing across the whole brain.

Data availability

The functional connectivity gradient maps and the timescale maps have been uploaded to figshare.Functional connectivity gradients: https://doi.org/10.6084/m9.figshare.19189331Intrinsic neural timescales: https://doi.org/10.6084/m9.figshare.19197026

The following data sets were generated

Article and author information

Author details

  1. Ana MG Manea

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    For correspondence
    manea006@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4786-9657
  2. Anna Zilverstand

    Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4889-9700
  3. Kamil Ugurbil

    Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah Heilbronner

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jan Zimmermann

    Department of Neuroscience, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

NIH (P41 EB027061)

  • Kamil Ugurbil
  • Jan Zimmermann

NIH (R01 MH118257)

  • Sarah Heilbronner

NIH (R56 EB031765)

  • Jan Zimmermann

NIH (R01 MH128177)

  • Jan Zimmermann

Digital Technologies Initiative

  • Jan Zimmermann

Minnesota Institute of Robotics

  • Jan Zimmermann

Young Investigator Awards from the Brain & Behavior Research Foundation

  • Anna Zilverstand
  • Sarah Heilbronner

NIH (P30DA048742)

  • Anna Zilverstand
  • Sarah Heilbronner
  • Jan Zimmermann

UMN AIRP award

  • Anna Zilverstand
  • Sarah Heilbronner
  • Jan Zimmermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were carried out in accordance with the University of Minnesota Institutional Animal Care and Use Committee and the National Institute of Health standards for the care and use of nonhuman primates. Protocol IDs: 2005-38127A 2005-38135A 1911-37623A

Copyright

© 2022, Manea et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,634
    views
  • 370
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana MG Manea
  2. Anna Zilverstand
  3. Kamil Ugurbil
  4. Sarah Heilbronner
  5. Jan Zimmermann
(2022)
Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain
eLife 11:e75540.
https://doi.org/10.7554/eLife.75540

Share this article

https://doi.org/10.7554/eLife.75540

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.

    1. Neuroscience
    Andrea Brenna, Micaela Borsa ... Urs Albrecht
    Research Article

    The circadian clock enables organisms to synchronize biochemical and physiological processes over a 24 hr period. Natural changes in lighting conditions, as well as artificial disruptions like jet lag or shift work, can advance or delay the clock phase to align physiology with the environment. Within the suprachiasmatic nucleus (SCN) of the hypothalamus, circadian timekeeping and resetting rely on both membrane depolarization and intracellular second-messenger signaling. Voltage-gated calcium channels (VGCCs) facilitate calcium influx in both processes, activating intracellular signaling pathways that trigger Period (Per) gene expression. However, the precise mechanism by which these processes are concertedly gated remains unknown. Our study in mice demonstrates that cyclin-dependent kinase 5 (Cdk5) activity is modulated by light and regulates phase shifts of the circadian clock. We observed that knocking down Cdk5 in the SCN of mice affects phase delays but not phase advances. This is linked to uncontrolled calcium influx into SCN neurons and an unregulated protein kinase A (PKA)-calcium/calmodulin-dependent kinase (CaMK)-cAMP response element-binding protein (CREB) signaling pathway. Consequently, genes such as Per1 are not induced by light in the SCN of Cdk5 knock-down mice. Our experiments identified Cdk5 as a crucial light-modulated kinase that influences rapid clock phase adaptation. This finding elucidates how light responsiveness and clock phase coordination adapt activity onset to seasonal changes, jet lag, and shift work.