Quantifying concordant genetic effects of de novo mutations on multiple disorders

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao  Is a corresponding author
  10. Qiongshi Lu  Is a corresponding author
  1. Tsinghua University, China
  2. Yale University, United States
  3. Washington University in St. Louis, United States
  4. Rockefeller University, United States
  5. University of Wisconsin-Madison, United States

Abstract

Exome sequencing on tens of thousands of parent-proband trios has identified numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disorders. Recent studies have suggested shared genes and pathways are enriched for DNMs across multiple disorders. However, existing analytic strategies only focus on genes that reach statistical significance for multiple disorders and require large trio samples in each study. As a result, these methods are not able to characterize the full landscape of genetic sharing due to polygenicity and incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to quantify shared genetic effects between two disorders characterized by concordant enrichment of DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM data of nine disorders, we identified abundant pairwise enrichment correlations, especially in genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results suggest that EncoreDNM improves current analytic approaches and may have broad applications in DNM studies.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Hanmin Guo

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lin Hou

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Shi

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sheng Chih Jin

    Department of Genetics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Zeng

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Boyang Li

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard Lifton

    Laboratory of Human Genetics and Genomics, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martina Brueckner

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongyu Zhao

    Yale University, New Haven, United States
    For correspondence
    Hongyu.Zhao@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Qiongshi Lu

    Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, United States
    For correspondence
    qlu@biostat.wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4514-0969

Funding

National Science Foundation of China (No. 12071243)

  • Lin Hou

Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX01)

  • Lin Hou

Wisconsin Alumni Research Foundation

  • Qiongshi Lu

Waisman Center pilot grant program at University of Wisconsin-Madison

  • Qiongshi Lu

National Institutes of Health (No. R03HD100883 and R01GM134005)

  • Hongyu Zhao

National Science Foundation (DMS 1902903)

  • Hongyu Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 980
    views
  • 197
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao
  10. Qiongshi Lu
(2022)
Quantifying concordant genetic effects of de novo mutations on multiple disorders
eLife 11:e75551.
https://doi.org/10.7554/eLife.75551

Share this article

https://doi.org/10.7554/eLife.75551

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Genetics and Genomics
    Sedigheh Delmaghani, Aziz El-Amraoui
    Insight

    The DYRK1A enzyme is a pivotal contributor to frequent and severe episodes of otitis media in Down syndrome, positioning it as a promising target for therapeutic interventions.