Ca2+-inactivation of the mammalian ryanodine receptor type 1 in a lipidic environment revealed by cryo-EM

  1. Ashok R Nayak
  2. Montserrat Samsó  Is a corresponding author
  1. Virginia Commonwealth University, United States

Abstract

Activation of the intracellular Ca2+ channel ryanodine receptor (RyR) triggers a cytosolic Ca2+ surge, while elevated cytosolic Ca2+ inhibits the channel in a negative feedback mechanism. Cryo-EM of rabbit RyR1 embedded in nanodiscs under partially inactivating Ca2+ conditions revealed an open and a closed-inactivated conformation. Ca2+ binding to the high affinity site engages the central and C-terminal domains into a block, which pries the S6 four-helix bundle open. Further rotation of this block pushes S6 toward the central axis, closing (inactivating) the channel. Main characteristics of the Ca2+-inactivated conformation are downward conformation of the cytoplasmic assembly and tightly-knit subunit interface contributed by a fully occupied Ca2+ activation site, two inter-subunit resolved lipids, and two salt bridges between the EF hand domain and the S2-S3 loop validated by disease-causing mutations. The structural insight illustrates the prior Ca2+ activation prerequisite for Ca2+ inactivation and provides for seamless transition from inactivated to closed conformations.

Data availability

The cryo-EM maps and models are available in the EMDB and PDB databases.

The following data sets were generated

Article and author information

Author details

  1. Ashok R Nayak

    Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Montserrat Samsó

    Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, United States
    For correspondence
    montserrat.samso@vcuhealth.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2788-3283

Funding

National Institutes of Health (R01 AR068431)

  • Montserrat Samsó

Muscular Dystrophy Association (MDA 352845)

  • Montserrat Samsó

National Institutes of Health (U24 GM116790)

  • Montserrat Samsó

National Institutes of Health (HSSN261200800001E)

  • Montserrat Samsó

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol #AD10001029 of Virginia Commonwealth. Animals were deeply anesthetized for tissue harvesting, and every effort was made to minimize suffering.

Copyright

© 2022, Nayak & Samsó

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,155
    views
  • 297
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashok R Nayak
  2. Montserrat Samsó
(2022)
Ca2+-inactivation of the mammalian ryanodine receptor type 1 in a lipidic environment revealed by cryo-EM
eLife 11:e75568.
https://doi.org/10.7554/eLife.75568

Share this article

https://doi.org/10.7554/eLife.75568

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.