Modelling the consequences of the dikaryotic life cycle of mushroom-forming fungi on genomic conflict
Abstract
Generally, sexual organisms contain two haploid genomes, one from each parent, united in a single diploid nucleus of the zygote which links their fate during growth. A fascinating exception to this are Basidiomycete fungi, where the two haploid genomes remain separate in a dikaryon, retaining the option to fertilize subsequent monokaryons encountered. How the ensuing nuclear competition influences the balance of selection within and between individuals is largely unexplored. We test the consequences of the dikaryotic lifecycle for mating success and mycelium-level fitness components. We assume a trade-off between mating fitness at the level of the haploid nucleus and fitness of the fungal mycelium. We show that the maintenance of fertilization potential by dikaryons leads to a higher proportion of fertilized monokaryons, but that the ensuing intra-dikaryon selection for increased nuclear mating fitness leads to reduced mycelium fitness relative to a diploid life cycle. However, this fitness reduction is lower compared to a hypothetical life cycle where dikaryons can also exchange nuclei. Prohibition of fusion between dikaryons therefore reduces the level of nuclear parasitism. The number of loci influencing fitness is an important determinant of the degree to which average mycelium-level fitness is reduced. The results of this study crucially hinge upon a trade-off between nucleus and mycelium-level fitness. We discuss the evidence for this assumption and the implications of an alternative that there is a positive relationship between nucleus and mycelium-level fitness.
Data availability
The current manuscript is a computational study, so no data have been generated. Simulation code for performing simulations as well as scripts to produce figures and analyses are available in Github repository https://github.com/BenAuxier/Basid.Sex.Sim
Article and author information
Author details
Funding
National Research Development and Innovation Office (K124438)
- Tamás L Czárán
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (ALGR.2017.010)
- Benjamin Auxier
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO86514007)
- Duur K Aanen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Auxier et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,503
- views
-
- 217
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.
-
- Cell Biology
- Evolutionary Biology
Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.