Evolution and regulation of microbial secondary metabolism

  1. Guillem Santamaria
  2. Chen Liao
  3. Chloe Lindberg
  4. Yanyan Chen
  5. Zhe Wang
  6. Kyu Rhee
  7. Francisco Rodrigues Pinto
  8. Jinyuan Yan  Is a corresponding author
  9. Joao B Xavier  Is a corresponding author
  1. University of Lisboa, Portugal
  2. Memorial Sloan Kettering Cancer Center, United States
  3. Weill Cornell Medical College, United States
  4. Memorial Sloan-Kettering Cancer Center, United States

Abstract

Microbes have disproportionate impacts on the macroscopic world. This is in part due to their ability to grow to large populations that collectively secrete massive amounts of secondary metabolites and alter their environment. Yet, the conditions favoring secondary metabolism despite the potential costs for primary metabolism remain unclear. Here we investigated the biosurfactants that the bacterium Pseudomonas aeruginosa makes and secretes to decrease the surface tension of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and mathematical modeling we show that the ability to make surfactants from glycerol varies inconsistently across the phylogenetic tree; instead, lineages that lost this ability are also worse at reducing the oxidative stress of primary metabolism on glycerol. Experiments with different carbon sources support a link with oxidative stress that explains the inconsistent distribution across the P. aeruginosa phylogeny and suggests a general principle: P. aeruginosa lineages produce surfactants if they can reduce the oxidative stress produced by primary metabolism and have excess resources, beyond their primary needs, to afford secondary metabolism. These results add a new layer to the regulation of a secondary metabolite unessential for primary metabolism but important to change physical properties of the environments surrounding bacterial populations.

Data availability

Sequencing data have been deposited in SRA, in the bioproject accession number PRJNA253624. Each individual sample has a file accession number listed in supporting table 7 provided. The additional dataset is provided through Dryad.

The following data sets were generated

Article and author information

Author details

  1. Guillem Santamaria

    3BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Chen Liao

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8474-1196
  3. Chloe Lindberg

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yanyan Chen

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhe Wang

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kyu Rhee

    Department of Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Francisco Rodrigues Pinto

    3BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4217-0054
  8. Jinyuan Yan

    Computational & Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, United States
    For correspondence
    yanj2@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2046-5625
  9. Joao B Xavier

    Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    xavierj@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3592-1689

Funding

National Institutes of Health (U01 AI124275)

  • Joao B Xavier

National Institutes of Health (R01 AI137269)

  • Joao B Xavier

FCT/Portugal (UIDB/04046/2020)

  • Francisco Rodrigues Pinto

FCT/Portugal (UIDP/04046/2020)

  • Francisco Rodrigues Pinto

European Research Council (734790)

  • Francisco Rodrigues Pinto

FCT/Portugal (SFRH/BD/142899/2018)

  • Guillem Santamaria

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Santamaria et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,684
    views
  • 422
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guillem Santamaria
  2. Chen Liao
  3. Chloe Lindberg
  4. Yanyan Chen
  5. Zhe Wang
  6. Kyu Rhee
  7. Francisco Rodrigues Pinto
  8. Jinyuan Yan
  9. Joao B Xavier
(2022)
Evolution and regulation of microbial secondary metabolism
eLife 11:e76119.
https://doi.org/10.7554/eLife.76119

Share this article

https://doi.org/10.7554/eLife.76119

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.