SMAD4 and TGFβ are architects of inverse genetic programs during fate-determination of antiviral CTLs

  1. Karthik Chandiran
  2. Jenny E Suarez-Ramirez
  3. Yinghong Hu
  4. Evan R Jellison
  5. Zenep Ugur
  6. Jun-Siong Low
  7. Bryan McDonald
  8. Susan M Kaech
  9. Linda S Cauley  Is a corresponding author
  1. University of Connecticut Health Center, United States
  2. Emory University, United States
  3. Yale University, Switzerland
  4. Salk Institute for Biological Studies, United States

Abstract

Transforming growth factor β (TGFβ) is an important differentiation factor for cytotoxic T lymphocytes (CTLs) and alters the expression levels of several of homing-receptors during infection. SMAD4 is part of the canonical signaling network used by members of the transforming growth factor family. For this study, genetically-modified mice were used to determine how SMAD4 and TGFβ receptor II (TGFβRII) participate in transcriptional-programing of pathogen-specific CTLs. We show that these molecules are essential components of opposing signaling mechanisms, and cooperatively regulate a collection of genes that determine whether specialized populations of pathogen-specific CTLs circulate around the body, or settle in peripheral tissues. TGFb uses a canonical SMAD-dependent signaling pathway to down-regulate Eomesodermin (EOMES), KLRG1 and CD62L, while CD103 is induced. Conversely, in vivo and in vitro data show that EOMES, KLRG1, CX3CR1 and CD62L are positively-regulated via SMAD4, while CD103 and Hobit are downregulated. Intravascular staining shows that signaling via SMAD4 promotes formation of terminally-differentiated CTLs that localize in the vasculature. Our data shows that inflammatory molecules play a key role in lineage-determination of pathogen-specific CTLs, and use SMAD-dependent signaling to alter the expression levels of multiple homing-receptors and transcription factors with known functions during memory formation.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE151637Figure 3-source data 1 contain the numerical data used to generate the figures

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Karthik Chandiran

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2118-7946
  2. Jenny E Suarez-Ramirez

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yinghong Hu

    Department of Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Evan R Jellison

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zenep Ugur

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun-Siong Low

    Department of Immunobiology, Yale University, Bellinzona, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Bryan McDonald

    NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Susan M Kaech

    NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Linda S Cauley

    Department of Immunology, University of Connecticut Health Center, Farmington, United States
    For correspondence
    lcauley@uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9488-0341

Funding

National Institute of Allergy and Infectious Diseases (R01 AI123864)

  • Susan M Kaech
  • Linda S Cauley

American association for Immunologists (AAI Careers in Immunology Fellowship)

  • Linda S Cauley

University of Connecticut Health Center (bridge funding)

  • Linda S Cauley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were performed in accordance with protocol AP-200531-0824 approved by the UCONN Health Institutional Animal Care and Use Committee (IACUC). Every effort was made to minimize suffering.

Copyright

© 2022, Chandiran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,093
    views
  • 263
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karthik Chandiran
  2. Jenny E Suarez-Ramirez
  3. Yinghong Hu
  4. Evan R Jellison
  5. Zenep Ugur
  6. Jun-Siong Low
  7. Bryan McDonald
  8. Susan M Kaech
  9. Linda S Cauley
(2022)
SMAD4 and TGFβ are architects of inverse genetic programs during fate-determination of antiviral CTLs
eLife 11:e76457.
https://doi.org/10.7554/eLife.76457

Share this article

https://doi.org/10.7554/eLife.76457

Further reading

    1. Immunology and Inflammation
    Weigao Zhang, Hu Liu ... Dan Weng
    Research Article

    As a central hub for metabolism, the liver exhibits strong adaptability to maintain homeostasis in response to food fluctuations throughout evolution. However, the mechanisms governing this resilience remain incompletely understood. In this study, we identified Receptor interacting protein kinase 1 (RIPK1) in hepatocytes as a critical regulator in preserving hepatic homeostasis during metabolic challenges, such as short-term fasting or high-fat dieting. Our results demonstrated that hepatocyte-specific deficiency of RIPK1 sensitized the liver to short-term fasting-induced liver injury and hepatocyte apoptosis in both male and female mice. Despite being a common physiological stressor that typically does not induce liver inflammation, short-term fasting triggered hepatic inflammation and compensatory proliferation in hepatocyte-specific RIPK1-deficient (Ripk1-hepKO) mice. Transcriptomic analysis revealed that short-term fasting oriented the hepatic microenvironment into an inflammatory state in Ripk1-hepKO mice, with up-regulated expression of inflammation and immune cell recruitment-associated genes. Single-cell RNA sequencing further confirmed the altered cellular composition in the liver of Ripk1-hepKO mice during fasting, highlighting the increased recruitment of macrophages to the liver. Mechanically, our results indicated that ER stress was involved in fasting-induced liver injury in Ripk1-hepKO mice. Overall, our findings revealed the role of RIPK1 in maintaining liver homeostasis during metabolic fluctuations and shed light on the intricate interplay between cell death, inflammation, and metabolism.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.