The skeletal muscle circadian clock regulates titin splicing through RBM20

Abstract

Circadian rhythms are maintained by a cell autonomous, transcriptional-translational feedback loop known as the molecular clock. While previous research suggests a role of the molecular clock in regulating skeletal muscle structure and function, no mechanisms have connected the molecular clock to sarcomere filaments. Utilizing inducible, skeletal muscle specific, Bmal1 knockout (iMSBmal1-/-) mice, we showed that knocking out skeletal muscle clock function alters titin isoform expression using RNAseq, LC-MS, and SDS-VAGE. This alteration in titin's spring length resulted in sarcomere length heterogeneity. We demonstrate the direct link between altered titin splicing and sarcomere length in vitro using U7 snRNPs that truncate the region of titin altered in iMSBmal1-/- muscle. We identified a mechanism whereby the skeletal muscle clock regulates titin isoform expression through transcriptional regulation of Rbm20, a potent splicing regulator of titin. Lastly, we used an environmental model of circadian rhythm disruption and identified significant down-regulation of Rbm20 expression. Our findings demonstrate the importance of the skeletal muscle circadian clock in maintaining titin isoform through regulation of RBM20 expression. Because circadian rhythm disruption is a feature of many chronic diseases, our results highlight a novel pathway that could be targeted to maintain skeletal muscle structure and function in a range of pathologies.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE189865

The following data sets were generated

Article and author information

Author details

  1. Lance A Riley

    Department of Physiology and Functional Genomics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiping Zhang

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Collin M Douglas

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joseph M Mijares

    Department of Physiology and Functional Genomics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David W Hammers

    Department of Pharmacology and Therapeutics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2129-4047
  6. Christopher A Wolff

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5129-5692
  7. Neil B Wood

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hailey R Olafson

    Department of Molecular Genetics of Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ping Du

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Siegfried Labeit

    Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Michael J Previs

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Eric T Wang

    Department of Molecular Genetics of Microbiology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2655-5525
  13. Karyn A Esser

    Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
    For correspondence
    kaesser@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5791-1441

Funding

NIH Office of the Director (DP5OD017865)

  • Eric T Wang

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR066082,F31AR070625)

  • Karyn A Esser

National Heart Lung and Blood Institute (R01HL157487)

  • Michael J Previs

Fondation Leducq (13CVD04)

  • David W Hammers
  • Siegfried Labeit

The authors declare that the funders had no impact on the design or data collection or writing of this manuscript

Ethics

Animal experimentation: All experiments were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved and monitored by the University of Florida Institutional Animal Care and Use Committee Protocols (IACUC numbers: 201809136, IACUC202100000018).

Copyright

© 2022, Riley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,101
    views
  • 474
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lance A Riley
  2. Xiping Zhang
  3. Collin M Douglas
  4. Joseph M Mijares
  5. David W Hammers
  6. Christopher A Wolff
  7. Neil B Wood
  8. Hailey R Olafson
  9. Ping Du
  10. Siegfried Labeit
  11. Michael J Previs
  12. Eric T Wang
  13. Karyn A Esser
(2022)
The skeletal muscle circadian clock regulates titin splicing through RBM20
eLife 11:e76478.
https://doi.org/10.7554/eLife.76478

Share this article

https://doi.org/10.7554/eLife.76478

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.