Abstract

Microglia serve critical remodeling roles that shape the developing nervous system, responding to the changing neural environment with phagocytosis or soluble factor secretion. Recent single-cell sequencing (scRNAseq) studies have revealed the context-dependent diversity in microglial properties and gene expression, but the cues promoting this diversity are not well defined. Here, we ask how interactions with apoptotic neurons shape microglial state, including lysosomal and lipid metabolism gene expression and dependence on Colony-stimulating factor 1 receptor (CSF1R) for survival. Using early postnatal mouse retina, a CNS region undergoing significant developmental remodeling, we performed scRNAseq on microglia from mice that are wild-type, lack neuronal apoptosis (Bax KO), or are treated with CSF1R inhibitor (PLX3397). We find that interactions with apoptotic neurons drives multiple microglial remodeling states, subsets of which are resistant to CSF1R inhibition. We find that TAM receptor Mer and complement receptor 3 are required for clearance of apoptotic neurons, but that Mer does not drive expression of remodeling genes. We show TAM receptor Axl is negligible for phagocytosis or remodeling gene expression but is consequential for microglial survival in the absence of CSF1R signaling. Thus, interactions with apoptotic neurons shift microglia towards distinct remodeling states and through Axl, alter microglial dependence on survival pathway, CSF1R.

Data availability

Sequencing data have been deposited in GEO under the reference series GSE192602.https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE192602Data generated or analyzed during this study are included in the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Sarah Rose Anderson

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacqueline M Roberts

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1024-3976
  3. Nathaniel Ghena

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1890-8036
  4. Emmalyn A Irvin

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joon Schwakopf

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Isabelle B Cooperstein

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alejandra Bosco

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Monica L Vetter

    Department of Neurobiology, University of Utah, Salt Lake City, United States
    For correspondence
    monica@neuro.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6262-8504

Funding

National Eye Institute (R01EY030307)

  • Monica L Vetter

National Eye Institute (T32EY024234)

  • Nathaniel Ghena

National Institute of Neurological Disorders and Stroke (T32NS115664)

  • Nathaniel Ghena

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18-08013 and #21-08001) of the University of Utah.

Copyright

© 2022, Anderson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,745
    views
  • 482
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah Rose Anderson
  2. Jacqueline M Roberts
  3. Nathaniel Ghena
  4. Emmalyn A Irvin
  5. Joon Schwakopf
  6. Isabelle B Cooperstein
  7. Alejandra Bosco
  8. Monica L Vetter
(2022)
Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence
eLife 11:e76564.
https://doi.org/10.7554/eLife.76564

Share this article

https://doi.org/10.7554/eLife.76564

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.