Mapping circuit dynamics during function and dysfunction

  1. Srinivas Gorur-Shandilya
  2. Elizabeth M Cronin
  3. Anna C Schneider
  4. Sara A Haddad
  5. Philipp Rosenbaum
  6. Dirk M Bucher
  7. Farzan Nadim
  8. Eve Marder  Is a corresponding author
  1. Brandeis University, United States
  2. New Jersey Institute of Technology, United States
  3. University of Zürich, Switzerland
  4. Brandeis University, Germany

Abstract

Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamical states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.

Data availability

All data needed to reproduce figures in this paper are available at https://zenodo.org/record/5090130

The following data sets were generated

Article and author information

Author details

  1. Srinivas Gorur-Shandilya

    Volen Center, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7429-457X
  2. Elizabeth M Cronin

    Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4949-0042
  3. Anna C Schneider

    Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1270-836X
  4. Sara A Haddad

    Department of Molecular Life Sciences, University of Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0807-0823
  5. Philipp Rosenbaum

    Volen Center, Brandeis University, Waltham, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9976-366X
  6. Dirk M Bucher

    Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Farzan Nadim

    Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4144-9042
  8. Eve Marder

    Volen Center, Brandeis University, Waltham, United States
    For correspondence
    marder@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9632-5448

Funding

National Institutes of Health (T32 NS007292)

  • Srinivas Gorur-Shandilya

National Institutes of Health (R35 NS097343)

  • Srinivas Gorur-Shandilya
  • Eve Marder

National Institutes of Health (MH060605)

  • Dirk M Bucher
  • Farzan Nadim

Deutsche Forschungsgemeinschaft (DFG SCHN 1594/1-1)

  • Anna C Schneider

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gorur-Shandilya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,417
    views
  • 248
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Srinivas Gorur-Shandilya
  2. Elizabeth M Cronin
  3. Anna C Schneider
  4. Sara A Haddad
  5. Philipp Rosenbaum
  6. Dirk M Bucher
  7. Farzan Nadim
  8. Eve Marder
(2022)
Mapping circuit dynamics during function and dysfunction
eLife 11:e76579.
https://doi.org/10.7554/eLife.76579

Share this article

https://doi.org/10.7554/eLife.76579

Further reading

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.

    1. Computational and Systems Biology
    Dylan C Sarver, Muzna Saqib ... G William Wong
    Research Article

    Organ function declines with age, and large-scale transcriptomic analyses have highlighted differential aging trajectories across tissues. The mechanism underlying shared and organ-selective functional changes across the lifespan, however, still remains poorly understood. Given the central role of mitochondria in powering cellular processes needed to maintain tissue health, we therefore undertook a systematic assessment of respiratory activity across 33 different tissues in young (2.5 months) and old (20 months) mice of both sexes. Our high-resolution mitochondrial respiration atlas reveals: (1) within any group of mice, mitochondrial activity varies widely across tissues, with the highest values consistently seen in heart, brown fat, and kidney; (2) biological sex is a significant but minor contributor to mitochondrial respiration, and its contributions are tissue-specific, with major differences seen in the pancreas, stomach, and white adipose tissue; (3) age is a dominant factor affecting mitochondrial activity, especially across most brain regions, different fat depots, skeletal muscle groups, eyes, and different regions of the gastrointestinal tract; (4) age effects can be sex- and tissue-specific, with some of the largest effects seen in pancreas, heart, adipose tissue, and skeletal muscle; and (5) while aging alters the functional trajectories of mitochondria in a majority of tissues, some are remarkably resilient to age-induced changes. Altogether, our data provide the most comprehensive compendium of mitochondrial respiration and illuminate functional signatures of aging across diverse tissues and organ systems.