Balance between breadth and depth in human many-alternative decisions
Abstract
Many everyday life decisions require allocating finite resources, such as attention or time, to examine multiple available options, like choosing an online food supplier. In these cases, our search resources can be spread across many options (breadth) or focused on a few of them (depth). Whilst theoretical work has described how finite resources should be allocated to maximise utility in these problems, evidence about how humans balance breadth and depth is lacking. We introduce a novel experimental paradigm where humans make a many-alternative decision under finite resources. In an imaginary scenario, participants allocate a finite budget to sample amongst multiple apricot suppliers in order to estimate the quality of their fruits, and ultimately choose the best one. We found that at low budget capacity participants sample as many suppliers as possible, and thus prefer breadth, whereas at high capacities participants sample just a few chosen alternatives in depth, and intentionally ignore the rest. The number of alternatives sampled increases with capacity following a power law with an exponent close to 0.75. In richer environments, where good outcomes are more likely, humans further favour depth. Participants deviate from optimality and tend to allocate capacity amongst the selected alternatives more homogeneously than it would be optimal, but the impact on the outcome is small. Overall, our results undercover a rich phenomenology of close-to-optimal behaviour and biases in complex choices.
Data availability
The data and analysis scripts have been deposited in an OSF repository available herehttps://osf.io/kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad
Article and author information
Author details
Funding
Howard Hughes Medical Institute (55008742)
- Ruben Moreno Bote
Institució Catalana de Recerca i Estudis Avançats (2016)
- Ruben Moreno Bote
Ministerio de Ciencia e Innovación (PID2019-108531GB-I00 AEI/FEDER)
- Salvador Soto-Faraco
European Regional Development Fund (Operative Programme for Catalunya 2014-2020)
- Salvador Soto-Faraco
Agència de Gestió d'Ajuts Universitaris i de Recerca (2019FI_B 00302)
- Alice Vidal
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Before starting the experiment, participants had to give their informed consent. This study was part of the project 'IMC: INTEGRACIÓN MULTISENSORIAL Y CONFLICTO' (PID2019-108531GB-I00) for which an ethical approval was obtained.
Copyright
© 2022, Vidal et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,167
- views
-
- 193
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Neuroscience
Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.
-
- Neuroscience
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain-behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within=0.36, LC1out=0.03; LC2within=0.34, LC2out=0.05; LC3within=0.35, LC3out=0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.