Dendritic branch structure compartmentalizes voltage-dependent calcium influx in cortical layer 2/3 pyramidal cells

  1. Andrew T Landau
  2. Pojeong Park
  3. J David Wong-Campos
  4. He Tian
  5. Adam E Cohen
  6. Bernardo L Sabatini  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
  2. Harvard University, United States

Abstract

Back-propagating action potentials (bAPs) regulate synaptic plasticity by evoking voltage-dependent calcium influx throughout dendrites. Attenuation of bAP amplitude in distal dendritic compartments alters plasticity in a location-specific manner by reducing bAP-dependent calcium influx. However, it is not known if neurons exhibit branch-specific variability in bAP-dependent calcium signals, independent of distance-dependent attenuation. Here, we reveal that bAPs fail to evoke calcium influx through voltage-gated calcium channels (VGCCs) in a specific population of dendritic branches in mouse cortical layer 2/3 pyramidal cells, despite evoking substantial VGCC-mediated calcium influx in sister branches. These branches contain VGCCs and successfully propagate bAPs in the absence of synaptic input; nevertheless, they fail to exhibit bAP-evoked calcium influx due to a branch-specific reduction in bAP amplitude. We demonstrate that these branches have more elaborate branch structure compared to sister branches, which causes a local reduction in electrotonic impedance and bAP amplitude. Finally, we show that bAPs still amplify synaptically-mediated calcium influx in these branches because of differences in the voltage-dependence and kinetics of VGCCs and NMDA-type glutamate receptors. Branch-specific compartmentalization of bAP-dependent calcium signals may provide a mechanism for neurons to diversify synaptic tuning across the dendritic tree.

Data availability

All data and code is posted on the Harvard Dataverse (doi:10.7910/DVN/ZHNKGE).

The following data sets were generated

Article and author information

Author details

  1. Andrew T Landau

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9105-1636
  2. Pojeong Park

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. J David Wong-Campos

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. He Tian

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    He Tian, has filed a patent on QuasAr6a (Application #: 63247704)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3282-7275
  5. Adam E Cohen

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    Adam E Cohen, has filed a patent for QuasAr6a (Application #: 63247704)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8699-2404
  6. Bernardo L Sabatini

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    bsabatini@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0095-9177

Funding

National Institute of Neurological Disorders and Stroke (F31NS113353)

  • Andrew T Landau

National Institute of Neurological Disorders and Stroke (R37NS046579)

  • Bernardo L Sabatini

National Institute of Mental Health (1RF1MH117042-01)

  • Adam E Cohen

Defense Advanced Research Projects Agency (Vannevar Bush Faculty Fellowship)

  • Adam E Cohen

Brain Research Foundation (Scientific Innovation)

  • Adam E Cohen

Harvard Medical School (Harvard Brain Initiative)

  • Adam E Cohen
  • Bernardo L Sabatini

Life Sciences Research Foundation (Merck Awardee)

  • J David Wong-Campos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were in accordance with the National Institutes of Health Guide for the care and use of laboratory animals and were approved by the Harvard University Institutional Animal Care and Use Committee (IACUC) (Protocol #: IS00000571-3).

Copyright

© 2022, Landau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,833
    views
  • 429
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew T Landau
  2. Pojeong Park
  3. J David Wong-Campos
  4. He Tian
  5. Adam E Cohen
  6. Bernardo L Sabatini
(2022)
Dendritic branch structure compartmentalizes voltage-dependent calcium influx in cortical layer 2/3 pyramidal cells
eLife 11:e76993.
https://doi.org/10.7554/eLife.76993

Share this article

https://doi.org/10.7554/eLife.76993

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.