Signal denoising through topographic modularity of neural circuits

  1. Barna Zajzon  Is a corresponding author
  2. David Dahmen
  3. Abigail Morrison
  4. Renato Duarte
  1. Forschungszentrum Jülich, Germany
  2. Radboud University Nijmegen, Netherlands

Abstract

Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally-relevant operating regimes, and provide an in-depth theoretical analysis unravelling the dynamical principles underlying the mechanism.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code can be found at https://doi.org/10.5281/zenodo.6326496.

Article and author information

Author details

  1. Barna Zajzon

    Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jülich, Jülich, Germany
    For correspondence
    b.zajzon@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3458-103X
  2. David Dahmen

    Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7664-916X
  3. Abigail Morrison

    Institute of Neuroscience and Medicine (INM-6), Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6933-797X
  4. Renato Duarte

    Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6099-667X

Funding

Initiative and Networking Fund of the Helmholtz Association

  • Barna Zajzon
  • Abigail Morrison
  • Renato Duarte

Helmholtz Portfolio theme Supercomputing and Modeling for the Human Brain

  • Barna Zajzon
  • Abigail Morrison
  • Renato Duarte

Excellence Initiative of the German federal and state governments (G:(DE-82)EXS-SF-neuroIC002)

  • Barna Zajzon
  • Abigail Morrison
  • Renato Duarte

Helmholtz Association (VH-NG-1028)

  • David Dahmen

European Commission HBP (945539)

  • David Dahmen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Zajzon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 836
    views
  • 164
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barna Zajzon
  2. David Dahmen
  3. Abigail Morrison
  4. Renato Duarte
(2023)
Signal denoising through topographic modularity of neural circuits
eLife 12:e77009.
https://doi.org/10.7554/eLife.77009

Share this article

https://doi.org/10.7554/eLife.77009

Further reading

    1. Neuroscience
    Ankur Sinha, Padraig Gleeson ... Robin Angus Silver
    Tools and Resources

    Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows. NeuroML, a model description language for computational neuroscience, was developed to address this fragmentation in modeling tools. Since its inception, NeuroML has evolved into a mature community standard that encompasses a wide range of model types and approaches in computational neuroscience. It has enabled the development of a large ecosystem of interoperable open-source software tools for the creation, visualization, validation, and simulation of data-driven models. Here, we describe how the NeuroML ecosystem can be incorporated into research workflows to simplify the construction, testing, and analysis of standardized models of neural systems, and supports the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, thus promoting open, transparent and reproducible science.

    1. Neuroscience
    Raven Star Wallace, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.