Flexible and efficient simulation-based inference for models of decision-making

  1. Jan Boelts  Is a corresponding author
  2. Jan-Matthis Lueckmann
  3. Richard Gao
  4. Jakob H Macke
  1. University of Tübingen, Germany

Abstract

Inferring parameters of computational models that capture experimental data is a central task in cognitive neuroscience. Bayesian statistical inference methods usually require the ability to evaluate the likelihood of the model—however, for many models of interest in cognitive neuroscience, the associated likelihoods cannot be computed efficiently. Simulation-based inference (SBI) offers a solution to this problem by only requiring access to simulations produced by the model. Previously, Fengler et al. introduced Likelihood Approximation Networks (LAN, Fengler et al., 2021) which make it possible to apply SBI to models of decision-making, but require billions of simulations for training. Here, we provide a new SBI method that is substantially more simulation-efficient. Our approach, Mixed Neural Likelihood Estimation (MNLE), trains neural density estimators on model simulations to emulate the simulator, and is designed to capture both the continuous (e.g., reaction times) and discrete (choices) data of decision-making models. The likelihoods of the emulator can then be used to perform Bayesian parameter inference on experimental data using standard approximate inference methods like Markov Chain Monte Carlo sampling. We demonstrate MNLE on two variants of the drift-diffusion model (DDM) and show that it is substantially more efficient than LANs: MNLE achieves similar likelihood accuracy with six orders of magnitude fewer training simulations, and is significantly more accurate than LANs when both are trained with the same budget. This enables researchers to perform SBI on custom-tailored models of decision-making, leading to fast iteration of model design for scientific discovery.

Data availability

We implemented MNLE as part of the open source package for SBI, sbi, available at https://github. com/mackelab/sbi. Code for reproducing the results presented here, and tutorials on how to apply MNLE to other simulators using sbi can be found at https://github.com/mackelab/mnle-for-ddms.

Article and author information

Author details

  1. Jan Boelts

    University of Tübingen, Tübingen, Germany
    For correspondence
    jan.boelts@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4979-7092
  2. Jan-Matthis Lueckmann

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard Gao

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-6433
  4. Jakob H Macke

    University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5154-8912

Funding

Deutsche Forschungsgemeinschaft (SFB 1233)

  • Jan-Matthis Lueckmann
  • Jakob H Macke

Deutsche Forschungsgemeinschaft (SPP 2041)

  • Jan Boelts
  • Jakob H Macke

Deutsche Forschungsgemeinschaft (Germany's Excellence Strategy MLCoE)

  • Jan Boelts
  • Jan-Matthis Lueckmann
  • Richard Gao
  • Jakob H Macke

Bundesministerium für Bildung und Forschung (ADIMEM,FKZ 01IS18052 A-D)

  • Jan-Matthis Lueckmann
  • Jakob H Macke

HORIZON EUROPE Marie Sklodowska-Curie Actions (101030918)

  • Richard Gao

Bundesministerium für Bildung und Forschung (Tübingen AI Center,FKZ 01IS18039A)

  • Jan Boelts
  • Jakob H Macke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Boelts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,896
    views
  • 743
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Boelts
  2. Jan-Matthis Lueckmann
  3. Richard Gao
  4. Jakob H Macke
(2022)
Flexible and efficient simulation-based inference for models of decision-making
eLife 11:e77220.
https://doi.org/10.7554/eLife.77220

Share this article

https://doi.org/10.7554/eLife.77220

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.