The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function

Abstract

BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2-deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.

Data availability

RNA-sequencing data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE196530.ATAC-seq data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE212807.Previously published datasets are available on NCBI's Gene Expression Omnibus under the accession number GSE83978 and GSE77857.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Shasha Li

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5924-6396
  2. Michael D Bern

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Benpeng Miao

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Changxu Fan

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Xiaoyun Xing

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Takeshi Inoue

    Laboratory of Lymphocyte Differentiation, Osaka University, Osaka, Japan
    Competing interests
    No competing interests declared.
  7. Sytse J Piersma

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5379-3556
  8. Ting Wang

    Department of Genetics, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  9. Marco Colonna

    Department of Pathology and Immunology, Washington University in St. Louis, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5222-4987
  10. Tomohiro Kurosaki

    Laboratory of Lymphocyte Differentiation, Osaka University, Osaka, Japan
    Competing interests
    Tomohiro Kurosaki, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6352-304X
  11. Wayne M Yokoyama

    Department of Medicine, Washington University in St. Louis, St Louis, United States
    For correspondence
    yokoyama@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264

Funding

National Institute of Allergy and Infectious Diseases (R01-AI129545)

  • Wayne M Yokoyama

National Human Genome Research Institute (R01-HG007175)

  • Ting Wang

National Human Genome Research Institute (U01-HG009391)

  • Ting Wang

National Human Genome Research Institute (U41-HG010972)

  • Ting Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse studies were conducted in accordance with the institutional ethical guidelines through institutional animal care and use committee (IACUC) protocol that was approved by the Animal Studies Committee of Washington University (#20180293).

Copyright

© 2022, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,787
    views
  • 345
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shasha Li
  2. Michael D Bern
  3. Benpeng Miao
  4. Changxu Fan
  5. Xiaoyun Xing
  6. Takeshi Inoue
  7. Sytse J Piersma
  8. Ting Wang
  9. Marco Colonna
  10. Tomohiro Kurosaki
  11. Wayne M Yokoyama
(2022)
The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function
eLife 11:e77294.
https://doi.org/10.7554/eLife.77294

Share this article

https://doi.org/10.7554/eLife.77294

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.

    1. Immunology and Inflammation
    Jasmine Rowell, Ching-In Lau ... Tessa Crompton
    Research Article

    Here, we sequenced rearranged TCRβ and TCRα chain sequences in CD4+CD8+ double positive (DP), CD4+CD8- single positive (SP4) and CD4-CD8+ (SP8) thymocyte populations from the foetus and young adult mouse. We found that life-stage had a greater impact on TCRβ and TCRα gene segment usage than cell-type. Foetal repertoires showed bias towards 3’TRAV and 5’TRAJ rearrangements in all populations, whereas adult repertoires used more 5’TRAV gene segments, suggesting that progressive TCRα rearrangements occur less frequently in foetal DP cells. When we synchronised young adult DP thymocyte differentiation by hydrocortisone treatment the new recovering DP thymocyte population showed more foetal-like 3’TRAV and 5’TRAJ gene segment usage. In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire. The foetal TCRβ repertoire was less diverse, less evenly distributed, with fewer non-template insertions, and all foetal populations contained more clonotypic expansions than adult. The differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing αβT-cells with properties and functions that are distinct from adult T-cells: their repertoire is less governed by MHC-restriction, with preference for particular gene segment usage, less diverse with more clonotypic expansions, and more closely encoded by genomic sequence.